• Title/Summary/Keyword: Ship's Safety Performance

Search Result 156, Processing Time 0.024 seconds

A Study on the Safety Handling Method of KCG's Water Jet Propulsion Ship (해양경찰 Water Jet 추진함정의 안전 조함법 연구)

  • Yun, Chong-Gum;Pak, Chae-Hong;Park, Deuk-Jin;Jung, Cho-Yeong
    • Journal of Navigation and Port Research
    • /
    • v.41 no.6
    • /
    • pp.373-380
    • /
    • 2017
  • Operational errors caused by human factors, which is the major cause of marine accidents, include lack of knowledge, misunderstanding knowledge, and inadequate procedures. Recently, the type of propulsion mounted on KCG cutters has been diversified. In particular, the water jet propulsion unit, which was mainly installed in small boats, have been gradually expanded to medium and large size Coast Guard cutters, reaching 50% of the total. Axes types are divided into 2 to 4, and the bucket types are divided into Double Reverse Bucket(DRB) and Single Reverse Bucket(SRB); in these, the backward and steering control methods are completely different. Diversification of these operating systems can increase factors causing human error by the ships' operators. However, there is a lack of research on the maneuvering methods, considering the inherent active characteristics of each type of water jet. In this paper, we analyze the sideway method suitable for the condition of Coast Guard Exclusive wharf without assistance, based on the astern performance of each type. Then, a ship handling simulator was used for the experiment; they compared and verified through interviews of captains.

Study of Small Craft Resistance under Different Loading Conditions using Model Test and Numerical Simulations (모형시험과 수치해석을 이용한 하중조건 변화에 따른 소형선박의 저항성능 변화에 관한 연구)

  • Jun-Taek, Lim;Michael;Nam-Kyun, Im;Kwang-Cheol, Seo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.6
    • /
    • pp.672-680
    • /
    • 2023
  • Weight is a critical factor in the ship design process given that it has a substantial impact on the hydrodynamic performance of ships. Typically, ships are optimally designed for specific conditions with a fixed draft and displacement. However, in reality, weight and draft can vary within a certain range owing to operational activities, such as fuel consumption, ballast adjustments, and loading conditions . Therefore, we investigated how resistance changes under three different loading conditions, namely overload, design-load, and lightship, for small craft, using both model experiments and numerical simulations. Additionally, we examined the sensitivity of weight changes to resistance to enhance the performance of ships, ultimately reducing power requirements in support of the International Maritime Organization's (IMO) goal of reducing CO2 emissions by 50% by 2050. We found that weight changes have a more significant impact at low Froude Numbers. Operating under overload conditions, which correspond to a 5% increase in draft and an 11.1% increase in displacement, can lead to a relatively substantial increase in total resistance, up to 15.97% and 14.31% in towing tests and CFD simulations, respectively.

Field Applicability Study of Hull Crack Detection Based on Artificial Intelligence (인공지능 기반 선체 균열 탐지 현장 적용성 연구)

  • Song, Sang-ho;Lee, Gap-heon;Han, Ki-min;Jang, Hwa-sup
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.4
    • /
    • pp.192-199
    • /
    • 2022
  • With the advent of autonomous ships, it is emerging as one of the very important issues not only to operate with a minimum crew or unmanned ships, but also to secure the safety of ships to prevent marine accidents. On-site inspection of the hull is mainly performed by the inspector's visual inspection, and video information is recorded using a small camera if necessary. However, due to the shortage of inspection personnel, time and space constraints, and the pandemic situation, the necessity of introducing an automated inspection system using artificial intelligence and remote inspection is becoming more important. Furthermore, research on hardware and software that enables the automated inspection system to operate normally even under the harsh environmental conditions of a ship is absolutely necessary. For automated inspection systems, it is important to review artificial intelligence technologies and equipment that can perform a variety of hull failure detection and classification. To address this, it is important to classify the hull failure. Based on various guidelines and expert opinions, we divided them into 6 types(Crack, Corrosion, Pitting, Deformation, Indent, Others). It was decided to apply object detection technology to cracks of hull failure. After that, YOLOv5 was decided as an artificial intelligence model suitable for survey and a common hull crack dataset was trained. Based on the performance results, it aims to present the possibility of applying artificial intelligence in the field by determining and testing the equipment required for survey.

A Study on the Design of Ergonomic Bridge Conning Display (인간공학적 Bridge Conning Display 설계에 관한 연구)

  • Yang Young-Hoon;Lee Bong-Wang;Lew Jae-Moon;Lee Chang-Min
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.11 no.2 s.23
    • /
    • pp.33-40
    • /
    • 2005
  • According to the development of technology of the navigational equipments, many bridge equipments have been improved, however, marine accidents by human error have not been reduced. Therefore, a matter of primary concern is focused on whether bridge equipments of ships are ergonomically arranged to reduce errors due to human factors. As part of a design of IBS(Integrated Bridge System) standard, rules of the conning display to save time and additional movements to obtain important informations of a ship should be established as soon as possible. In the present study, ergonomic design factors for the conning display are studied through the survey of related works, heuristic evaluations, sketch method tests as well as questionnaires. Using these factors, new conning display was designed and the ergonomic indices were evaluated by comparing tests of the existing conning displays. It is found that the designed conning display obtained high ergonomic index showed better performance, therefore, the ergonomic index studied in the present paper can be used as a useful design standard in the conning display design procedures.

  • PDF

A Study on the Basic Design and its Characteristics of 50ft-class CFRP Cruise Boat (50피트급 탄소섬유강화복합재료 크루즈 보트의 기본설계 및 특성)

  • Oh, Dae-Kyun;Lee, Chang-Woo;Jeong, Uh-Cheul;Ryu, Cheol-Ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.6
    • /
    • pp.674-680
    • /
    • 2013
  • As the range of marine leisure activity gradually expands to ocean-going, a habitable cruise boat has been getting the limelight. Advanced countries in the marine leisure industry in Europe and North America have already secured their competitiveness in designing and building cruise boats by elegant design, ergonomic structure and fuel efficiency through the adoption of light-weight hull materials. In contrast, mostly small power boats are developed and built in Korea, and GFRP take up the most of hull materials. This study inquired into the design and characteristics of a 50ft-class CFRP that ocean-going is possible. The hull-form of the CFRP cruise boast were analyzed to propose a hull form for the designed ship (MMU-C.B), and based on that, the design model of the MMU-C.B was built. Finally, the MMU-C.B's characteristics of the resistance performance and hull-planing were found by comparative reviews with the results of model tests of GFRP pleasure yachts.

Comparative Studies of Thermal Insulation Performance of Life Vests by Numerical Analysis and Experiment (보온 재료에 따른 구명 조끼 별 단열성능의 비교 실험 및 해석)

  • Kim, Sung-Chan;Lee, Kyung-Hoon;Hwang, Se-Yun;Jang, Ho-Sang;Lee, Jang-Hyun
    • Journal of Navigation and Port Research
    • /
    • v.40 no.1
    • /
    • pp.7-14
    • /
    • 2016
  • Although the life jacket can provide the buoyance with the drowner, heat loss can make the drowned individual be subject to the hypothermia. In this study, The thermal insulation of two types life jacket including inflatable and foam type were evaluate by both experiments and numerical analysis. To estimate the thermal resistance of the jackets, experiments on the heat flux were conducted by the thermal manikin exposed to cold water. Heat flux loss on the surface of thermal manikin were measured for both foam and inflatable type life jacket. Also, finite element method is applied to a body section in order to understand the level of hypothermia of each life jacket. The segmental of human thigh is represented by a multi-layered section which considers the heat conduction within tissue, bone and fat. As a result, the thermal resistance and hypothermia time of each jackets have been compared based on the finite element analysis. It was found that the insulation ability of suggested life jackets is better than that of conventional type.