• Title/Summary/Keyword: Ship's Bottom

Search Result 100, Processing Time 0.029 seconds

Effects of Hull Form Variations on Resistance and Seakeeping Performance of Planing Hulls with and without Incoming Regular Waves (고속 활주선의 선형에 따른 저항 성능 및 규칙파 중 운동 성능 고찰)

  • Kim, Dong Jin;Kim, Sun Young;Kim, Seong Hwan;Seo, Jeong Hwa;Rhee, Shin Hyung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.5
    • /
    • pp.369-379
    • /
    • 2014
  • Planing hull forms have significant influences on those hydrodynamic performances in calm water and in waves. Therefore, the hydrodynamic performance of a planing vessel should be predicted by model tests or theoretical calculations, and be confirmed whether it shows the performance requirements at the design stage. In this study, four planing hull forms are designed with the goal of the improvement of resistance and seakeeping performance, and 1/6.5 scale model tests are carried out in Seoul National University towing tank. The effects of design parameters such as length-to-beam ratio, deadrise angle and forebody shape on the hydrodynamic performance are investigated, based on model test results. Running attitude and resistance of model ships in calm water are also estimated by empirical formulae proposed by Savitsky (1964; 2007; 2012), and compared with the model test results. It is shown that calm water performance of non-prismatic planing hulls can be predicted well by Savitsky (2012)'s formula which improves the original Savitsky(1964/2007)'s formula by taking into account the variations of deadrise angles, and the actual angles between the hull bottom and the free surface.

A Study on Resisitance Performance of the Straight-Framed V-Bottom Hull Forms with High Displacement-Length Ratio (고(高) 배수량일장(排水量一長) 비(比) V-형(型) 직선늑골선형(直線肋骨船型)의 추진저항성능(推進抵抗性能)에 관(關)하여)

  • Kyu-Jong,Cho
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.6 no.1
    • /
    • pp.25-34
    • /
    • 1969
  • From viewpoints of over-all ship economy the straight framed V-bottom hull forms with chines are considered to be attractive even for usual commercial vessels, because increments of resistance over that of round hull forms, if any, can be well compensated with reduction in construction cost.[1] To investigate the influences of both prismatic coefficient and chine elevation on resistance performance, three models of straight-framed V-bottom hull forms which are similar to Prof. C. Ridgely-Nevitt's W-18, W-8, and W-20[2],[3] in size and hull form coefficients were tested at the SNU Ship Model Towing Tank for resistance measurements. They are of Cp=0.60, 0.65 and 0.70 and of ${\Delta}/(0.01L)^3=300$. Influence of variation of chine elevation on resistance performance were observed with the test results obtained at normal condition, and at the trimed by the stern by 2% and 4% of $L_{bp}$ at normal condition under same displacement. The hull form characteristics are shown in Table 1, and in Fig. 1, 2, 3, 4 and 5. The test results are shown in Fig 8, 9 and 10 in the form of Cr vs. $V/\sqrt{L}$ curves taking Cp as a parameter for normal condition, trim by the stern in 2% and 4% $L_{bp}$ at normal condition , respectively. Cr vs. $V/\sqrt{L}$ curves taking trim condition as a parameter are also shown in Fig 11, 12 and 13 for Cp=0.60 and 0.70, respectively. The best and the worst trim condition at given $V/\sqrt{L}$ in viewpoint of Cr are plotted for each Cp-value as shown in Fig 14, 15 and 16. From the above results the following conclusions are derived: (1) In general, the resistance performance of the straight-framed V-bottom hull forms are not inferior to those of round hull forms. At a certain range of $V/\sqrt{L}$ the former gives less resistance than the latter. (2) Regarding influences of Cp on Cr, it is observed that, at $V/\sqrt{L}$ less than about 0.925, the greater Cp-value gives the more increment of Cr, and that, at $V/\sqrt{L}$ greater than about 0.925 the smaller Cp-value gives the more increment of Cr. It is also noteworthy that the model of Cp=0.70 has remarkable hump on Cr vs. $V/\sqrt{L}$ curve between $V/\sqrt{L}=0.80$ and 0.90. (3) For higher speed within the test range, the chine elevation having the steeper slope around bow and the easier slope around amidship and stern, refered to watering, give the better results in resistance performance. (4) Assuming the chine elevations adopted for the tested models were not of the best, we would expect further improvement of resistance performance for such form. Hence, a systematic study on chine elevation is very disirable to prepare design data of general purpose for the such hull forms.

  • PDF

The Hydrodynamical Study on the Selection of Planing Hull Forms. (Planing Hull의 선형선택(船型選擇)에 따르는 유체역학적(流體力學的) 고찰(考察))

  • Sun-Young,Pak;Sang-Hyouk,Choi
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.2 no.1
    • /
    • pp.9-14
    • /
    • 1965
  • Ship designers make every efforts to get faster ships in accordance with the development of the Naval Architecture. But for the speed lying over factor length ratio 2.5-3.0, we could put a powerful engine into the conventional round bottom displacement type vessels, but it is very difficult in view point of economy, weight and volume. The principal cause of these speed obstacles is the wave making resistance and researchers are trying to decrease this resistance. One of the resolving ways, planing hulls were applied to small high boats. Planing hull's advantage is not restricted to speed, but the workmanship of the planing hull is easier than those of displacement type vessels of round bottom. Planing hull, therefore, are widely applicable to the intermediate speed boats, which don't have enough high speed to take planing advantage, as well as high speed boats. We will discuss related phenomena of the planing hull in details and this paper we particularly interested in the interjection point(speed length ratio 3.0-3.5 by Mr. D. De Groots) between semi-planing and full planing hulls on the resistance characteristic curve. The paper by Prof. Keuck Chun Kim, "Some Characteristics of Straight Framed V-bottom Hull Forms", Journal of the society of Naval Architects of Korea, Vol.1, No.1, Dec.5, 1964, is referred to the V-bottom hull forms belonging to low speed region and determines practical applicable limit of the speed length ratio combined with construction costs, under which are still used by large commercial vessels. This is the interesting contrast between his and authors. We will further discuss the speed length ratio which is considered as a beginning point to planing effect. For this analysis, we choose 3 model ships: Model (1) and (2) have the same principal dimensions, model 3 varied dimension. Model (1) is full-planing hull, (2) is semi-planing hull and (3) is complete planing hull. They are aimed to collect proper design data for purposed ships.

  • PDF

Cause Investigation for the Flooding and Sinking Accident of the Ro-Ro Ferry Ship (로로 여객선의 침수 및 침몰사고 원인규명)

  • Chung, Young-Gu;Lee, Jae-Seok;Ha, Jung-Hoon;Lee, Sang-Gab
    • Journal of Navigation and Port Research
    • /
    • v.44 no.3
    • /
    • pp.264-274
    • /
    • 2020
  • The Ro-Ro ferry ship capsized and sank to the bottom of the sea because of the rapid turning for several reasons, such as lack of stability due to the center of gravity rise from the extension and rebuilding of the stern cabin, excessive cargo loading, and shortage ballast, poor lashing, etc. The purpose of this study was to investigate and analyze the cause of the ship's rapid flooding, capsizing, and sinking accident according to rapid turning scientifically and accurately using the Fluid-Structure Interaction( FSI) analysis technique. Several tests were conducted for this cause investigation of the flooding and sinking accident correctly and objectively, such as the realization of the accurate ship posture tracks according to the accident time using several accident movies and photos, the validation of cargo moving track, and sea water inflow amount through the exterior openings and interior paths compared with the ship's posture according to the accident time using the floating simulation and hydrostatic characteristics program calculation, and the performance of a full-scale ship flooding·sinking simulation.

A Study on the Dynamic Strength Analysis of the Hull Girder Among Waves Considering Non-Linear Hydrodynamic forces (선박의 비선형 유체력을 고려한 파랑중 동적 강도 해석법에 관한 연구)

  • Ku-Kyun Shin;Sa-Soo Kim;Sung-Wan Son
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.4
    • /
    • pp.152-172
    • /
    • 1992
  • The ship sailing among waves are suffered the various wave loads that comes from its motion throughout its life. Because there are dynamic, the analysis of ship structure must be considered as the dynamic problem precisely. In the rationally-based design, the dynamic structural analysis is carried out using dynamic wave loads provided from the results of the ship mouton calculation as the rigid body. This method is based on the linear theory assumed low wave height and small amplitude of motion. But at the rough sea condition, high wave height, relatively ship's depth, is induced the large ship motion, so the ship section configulation below water line is rapidly changed at each time. This results in non-linear problem. Considering above situation in this paper, the strength analysis method is introduced for the hull glider among waves considering non-linear hydrodynamic forces. This paper considers that the overall or primary level of the ship structural dynamic loading and dynamic response provided from the non-linear wave forces, and bottom and bow flare impact forces estimated by momentum slamming theory, in which the ship is idealized as a hollow thin-walled box beam using thin-walled beam theory and the finite element method. This method is applied to 40,000 Ton Double-Skin Tanker and attention is paid to the influence of the response of ship speed, wave length and wave height compared with linear strip theory.

  • PDF

A Study on Flooding·Sinking Simulation for Cause Analysis of No. 501 Oryong Sinking Accident

  • Lee, Jae-Seok;Oh, Jai-Ho;Lee, Sang-Gab
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.11a
    • /
    • pp.241-247
    • /
    • 2018
  • Deep-sea fishing vessel No. 501 Oryong was fully flooded through its openings and sunk to the bottom of the sea due to the very rough sea weather on the way of evasion after a fishing operation in the Bearing Sea. As a result, many crew members died and/or were missing. In this study, a full-scale ship flooding and sinking simulation was conducted, and the sinking process was analyzed for the precise and scientific investigation of the sinking accident using a highly advanced Modeling & Simulation (M&S) system of the Fluid-Structure Interaction (FSI) analysis technique. To objectively secure the weather and sea states during the sinking accident in the Bering Sea, time-based wind and wave simulation at the region of the sinking accident was conducted and analyzed, and the weather and sea states were realized by simulating the irregular strong wave and wind spectrums. Simulation scenarios were developed and full-scale ship and fluid (air & seawater) modeling was performed for the flooding sinking simulation, by investigating the hull form, structural arrangement & weight distribution, and exterior inflow openings and interior flooding paths through its drawings, and by estimating the main tank capacities and their loading status. It was confirmed that the flooding and sinking accident was slightly different from a general capsize and sinking accident according to the simple loss of stability.

  • PDF

Computation of the Bow Deck Design Pressure against the Green Water Impact (Green Water 충격에 대비한 선수갑판 설계압력의 산출)

  • Kim, Yong Jig;Shin, Ki-Seok;Lee, Seung-Chul;Ha, Youngrok;Hong, Sa Young
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.4
    • /
    • pp.343-351
    • /
    • 2019
  • Green water impact may sometimes cause some structure damages on ship's bow deck. Prediction of proper design pressure against the green water impact is an essential task to prevent the possible damages on bow deck. This paper presents a computational method of the bow deck's design pressure against the green water impact. Large heave and pitch motions of ship are calculated by the time domain nonlinear strip method. Green water flow and pressure on bow deck are simulated by the predictor-corrector second kind upstream finite difference method. This green water simulation method is based on the shallow water wave equations expanded for moving bottom conditions. For various kind of ships such as container ship, VLCC, oil tanker and bulk carrier, the green water design pressures on bow deck are computed and discussed. Also, the obtained results of design pressure on bow deck are compared with those of the classification society rules and discussed.

Estimation of Coastal Terrain Differences by time-series using GSIS and The chart (GSIS를 이용한 해안 지형의 시계열 변화량 추출)

  • 양인태;한성만;최승필
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2002.04a
    • /
    • pp.219-228
    • /
    • 2002
  • Because western sea on the shore development is threatening sea ecosystem by decrease of silt and large size land-reclamation work by industrialization causes surrounding weather change and sea change, generate much changes bottom of the sea topography and coastline. Also, is influencing to route for safe entry into port of ship, departure. Therefore, this research did 0m boundary line, anxiety 2m line which appear to coastline of land portion and the border of silt using sea base level of lowest low tone side that is base line that appear because of sea waves to basis data numerical value Tuesday, numerical value by divide drawing that is changed to 4 area and analyze change degree of new airport construction and new town development, seashore by western sea district along the coast development of tide embankment construction and so on and bottom of the sea recognize.

  • PDF

Modeling and Tracking Simulation of ROV for Bottom Inspection of a Ship using Component Drag Model (요소항력모델을 활용한 선저검사용 ROV 모델링 및 트래킹 시뮬레이션)

  • Jeon, MyungJun;Lee, DongHyun;Yoon, Hyeon Kyu;Koo, Bonguk
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.5
    • /
    • pp.374-380
    • /
    • 2016
  • The large drift and angle of attack motion of an ROV (Remotely operated vehicle) cannot be modeled using the typical hydrodynamic coefficients of conventional straight running AUVs and specific slender bodies. In this paper, the ROV hull is divided into several simple-shaped components to model the hydrodynamic force and moment. The hydrodynamic force and moment acting on each component are modeled as the components of added mass force and drag using the known values for simple shapes such as a cylinder and flat plate. Since an ROV is operated under the water, the only environmental force considered is the current effect. The target ROV dealt with in this paper has six thrusters, and it is assumed that its maneuvering motion is determined using a thrust allocation algorithm. Tracking simulations are carried out on the ship’s surface near the stern, bow, and midship sections based on the modeling of the hydrodynamic force and current effect.

Development of Buckling and Compressive Ultimate Strength Formulations for Rectangular Plate with Cutout (압축하중을 받는 유공판의 좌굴 및 최종강도 설계식 개발)

  • 박주신;고재용
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.237-244
    • /
    • 2004
  • Plate that have cutout inner bottom and girder and floor etc. in hull construction absence is used much, and this is strength in case must be situated, but establish in region that high stress interacts sometimes fatally in region that there is no big problem usually by purpose of weight reduction, a person and change of freight, piping etc.. Because cutout's existence gnaws in this place, and, elastic buckling strength by load causes large effect in ultimate strength. Therefore, perforated plate elastic buckling strength and ultimate strength is one of important design criteria which must examine when decide structural elements size at early structure design step of ship. Therefore, and, reasonable elastic buckling strength about perforated plate need design ultimate strength. Calculated ultimate strength change several aspect ratioes and cutout's dimension, and thickness in this investigation. Used program applied ANSYS F.E.M code based on finite element method.

  • PDF