• Title/Summary/Keyword: Shielding Film

Search Result 93, Processing Time 0.026 seconds

The Shielding Effectiveness of Zn-Al Arc Thermal Metal Film Coated Cement-Mortar Using Copper Powder (Zn-Al 아크 금속용사 피막을 적용한 구리분말 혼입 시멘트 모르타르의 전자파 차폐 성능 평가)

  • Choi, Hyun-Jun;Choi, Hyun-Kuk;Kim, Hyeong-Cheol;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.124-125
    • /
    • 2017
  • In this study, the shielding effectiveness of the Zn-Al arc thermal metal film coated cement-mortar mixed with copper powder by reflection, absorption, multi-reflection loss in 2.25~2.65 GHz was reviewed. By enhancing the mixing ratio of copper powder, the shielding effectiveness by absorption and multi-reflection loss was increased, but shielding rate(%) based on 80 dB showed below 20%. The Zn-Al arc thermal metal film coated on specimen, the shielding rate increased 3.5 times by reflection loss.

  • PDF

Electromagnetic Shielding Effectiveness of Melt-blown Nonwoven Fabric with Width and Interval of Thin Copper Film (구리박막의 넓이와 간격에 따른 melt-blown 부직포의 전자파 차폐 효과)

  • Shin Hyun Sae;Son Jun Sik;Kim Young Sang;Jeong Jin Soo
    • Textile Coloration and Finishing
    • /
    • v.16 no.5
    • /
    • pp.42-47
    • /
    • 2004
  • The main objective of this work is to develop melt-blown nonwoven fabric composite materials have electromagnetic shielding characteristics using thin copper film. Melt-blown nonwoven fabric is the matrix phase and thin copper films are the reinforcement of the composite materials. Thin copper films are incorporated as conductive fillers to provide the electromagnetic shielding property of the melt-blown nonwoven fabric. The width and interval of thin copper films in the nonwoven fabric are varied by changing 1, 3, 5 mm for thin copper film's width and 1, 3, 5 mm for thin copper film's interval. The shielding effectiveness(SE) of various melt-blown nonwoven fabrics is measured in the frequency range of 50 MHz to 1.8 GHz. The variations of SE of melt-blown nonwoven fabric with width and interval of thin copper films are described. Suitability of melt-blown nonwoven fabric for electromagnetic shielding applications is discussed. The results indicate that the melt-blown nonwoven fabric composite material using thin copper film can be used for the purpose of electromagnetic shielding.

Electrical and Electromagnetic Shielding Properties of Polyaniline Films with Different Degrees of Crosslinking (교차결합의 변화에 따른 Polyaniline 필름의 전기적 성질과 전자기차폐 성질에 관한 연구)

  • 김재욱
    • Electrical & Electronic Materials
    • /
    • v.10 no.1
    • /
    • pp.54-60
    • /
    • 1997
  • The electrical and electromagnetic shielding properties have been investigated in polyaniline free standing films with different degrees of elongation cast from N-methyl 2-pyrrolidone(NMP) solution and camphorsulfonic acid(HCSA) doped polyaniline film. The degree of crystallinity of the crosslinked films increased with increasing the draw ratio. For the case of the oriented films doped with hydrochloric acid, we have the values of conductivities up to 173 S/cm. It is considered that the physical micro-crystalline crosslinking domains act as nucleation sites for the increase of relative crystallinity during stretching. We have obtained the value of conductivity 210 S/cm in the HCSA doped polyaniline film cast from the solvent of m-cresol, which is higher than that of the crosslinking oriented films. The electromagnetic shielding efficiency of HCSA doped polyaniline film obtained 37-41 dB in the frequency range of 10MHz-1GHlz, which is higher than that of the crosslinking oriented films. The higher value of electromagnetic shielding efficiency of HCSA doped polyaniline film suggests strong possibility of electromagnetic shielding material.

  • PDF

Effects of Cr and Al Sputtered sheet for the Electromagnetic Shielding (전자차폐(電磁遮蔽)를 위한 크롬 및 알루미늄 스퍼터링의 효과)

  • Kim, Dong-Jin
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.73-79
    • /
    • 2001
  • In this paper, shielding effectiveness(SE) of the shielding material of electromagnetic(EM) waves was investigated with actual experiments. The materials used in this study were made up of sputtering, film and powder of conductive materials - Cr, Al, Ag and Cu etc. Also, the polyester film was used as a base material. The experiment was carried out by using a shielding evaluator(Shielding box) TR17302 with an ADVANTEST spectrum analyzer, model R3361C. It was found from the experimental results that silver, copper, aluminum and chromium were good candidates as a shielding material against the EM waves with increasing the SE as the composite was laminated. The characteristics of the SE against the EM waves depended on a mode of preparation of specimen. The effects of density of particles on the SE were studied when the sputtering. The SE strongly depended on the electric resistance by density of sputtering and painting particles. SE increased as the density of particles was increasing.

  • PDF

Research on Radiation Shielding Film for Replacement of Lead(Pb) through Roll-to-Roll Sputtering Deposition (롤투롤 스퍼터링 증착을 통한 납(Pb) 대체용 방사선 차폐필름 개발)

  • Sung-Hun Kim;Jung-Sup Byun;Young-Bin Ji
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.3
    • /
    • pp.441-447
    • /
    • 2023
  • Lead(Pb), which is currently mainly used for shielding purposes in the medical radiation, has excellent radiation shielding functions, but is continuously exposed to radiation directly or indirectly due to the harmfulness of lead itself to the human body and the inconvenience caused by its heavy weight. Research on shielding materials that are human-friendly, lightweight, and convenient to use that can block risks and replace lead is continuously being conducted. In this study, based on the commonly used polyethylene terephthalate (PET) film and the fabric material used in actual radiation protective clothing, a multi-layer thin film was realized through sputtering and vacuum deposition of bismuth, tungsten, and tin, which are metal materials that can shield radiation. Thus, a shielding film was produced and its applicability as a radiation shielding material was evaluated. The radiation shielding film was manufactured by establishing the optimized conditions for each shielding material while controlling the applied voltage, roll driving speed, and gas supply amount to manufacture the shielding film. The adhesion between the parent material and the shielding metal thin film was confirmed by Cross-cut 100/100, and the stability of the thin film was confirmed through a hot water test for 1 hour to measure the change of the thin film over time. The shielding performance of the finally realized shielding film was measured by the Korea association for radiation application (KARA), and the test conditions (inverse wide beam, tube voltage 50 kV, half layer 1.828 mmAl) were set to obtain an attenuation ratio of 16.4 (initial value 0.300 mGy/s, measured value 0.018 mGy/s) and damping ratio 4.31 (initial value 0.300 mGy/s, measured value 0.069 mGy/s) were obtained. by securing process efficiency for future commercialization, light and shielding films and fabrics were used to lay the foundation for the application of films to radiation protective clothing or construction materials with shielding functions.

Electromagnetic Interference Shielding Effectiveness of Fiber Reinforced Composites Hybrid Conductive Filler (하이브리드 전도성 Filler 섬유강화 복합재료의 전자파 차폐효과)

  • Han, Gil-Young;Song, Dong-Han;Bae, Ji-Soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.3
    • /
    • pp.35-39
    • /
    • 2009
  • The main objective of this study was to investigate fiber reinforced composite materials (FRCM) with electromagnetic shielding characteristics using aluminum (Al) film and copper (Cu) meshes. This study investigated the electromagnetic interference (EMI) shielding effectiveness (SE) of fiber reinforced composites filled with Al film, Cu meshes, and nano carbon black as hybrid conductive fillers to provide the electromagnetic shielding property of the fiber reinforced composites. The coaxial transmission line method of ASTM D 4935-89 was used to measure the EMI shielding effectiveness of composites in the frequency range of 300 MHz to 1.5 GHz. The variations of SE of FRCM with Al film, fine Cu, and general Cu meshes are described. The results indicate that the FRCM having Al film exhibited up to 75 dB of SE at 1.5 GHz.

Electromagnetic Shielding Effectiveness of a Soft Magnetic Film for Application of Noise Reduction In RE Range (RF대역 노이즈 저감용 연자성 필름의 전자기파 차폐효과)

  • Kim Sang-Woo;Yun Yong-Woon;Kim Gwang-Yoon;Lee Yo-Chun;Lee Kyung-Sup
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.3 s.32
    • /
    • pp.31-36
    • /
    • 2004
  • We charaterized electromagnetic shielding properties of a soft magnetic film using by a ASTM method and 2-port flanged coaxial line method in a RF range and quantitatively analyzed factors for the shielding effectiveness of the soft magnetic film in far field. The shielding effectiveness of the soft magnetic film was dominantly affected by absorption loss not reflection loss in high frequency range of 4-13.5 GHz.

  • PDF

NbTi Thin Film by RF Sputtering Method (RF Sputtering법에 의한 NbTi박막 제조연구)

  • Kim, Bong-Seo;Woo, Byung-Chul;Ha, Dong-Woo;Byun, Woo-Bong;Lee, Hee-Woong
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.212-214
    • /
    • 1994
  • At recent time, superconducting technology makes it possible to develop various devices using strong magnetic fields. As increasing with devices using high magnetic fields, magnetic shielding technology is essential in order to get high efficiency. Therefore it is necessary to establish production method and clear characteristics of suitable shielding materials. Usually, ferromagnetic metal has been used for shielding of high magnetic fields up to the present time. Instead of heavy ferromagnetic metal, we can acquire better upgraded shielding system by using of very light superconducting thin film that has a perfect diamagnetism. We would like to study basic characteristics of NbTi thin film produced by RF sputtering, investigated morphology and crystal structure of NbTi thin film by SEM and XRD, identified superconductivity measuring by critical current.

  • PDF

A Study on Electromagnetic Interference Shielding Effectiveness of the Aluminum film, Conductive Fabric and Nano Carbon black/Carbon Fiber Reinforced Composites (알루미늄 필름, 전도성 직조섬유/나노 카본블랙 탄소섬유복합재료의 전자파 차폐효과에 관한 연구)

  • Han, Gil-Young;Song, Dong-Han;Bae, Ji-Soo;Ahn, Dong-Gyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.4
    • /
    • pp.10-16
    • /
    • 2008
  • This study investigated electromagnetic interference(EMI) shielding effectiveness(SE) of the aluminum film, conductive fabric and nano carbon black carbon fiber reinforced composites. We fabricated carbon fiber reinforced composites filled with nano carbon black where they bonded aluminum film and conductive fabric. The measurements of SE were carried out frequency range from 300MHz to 1.5GHz. It is observed that the SE of the bonded aluminum film and conductive fabric composites is the frequency dependent, increase with the increase in filler nano carbon black content. The aluminum film bonded composites showed higher SE compared to that of carbon black and conductive fabric. The aluminum film bonded epoxy composite was shown to exhibit up to 80dB of SE. The result that aluminum film bonded composite can be used for the purpose of EMI shielding as well as for some microwave applications.

  • PDF

Thin Film Effects on Side Channel Signals (부 채널 신호에 대한 박막의 영향)

  • Sun, Y.B.
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.2
    • /
    • pp.51-56
    • /
    • 2013
  • Even if transmissions through normal channel between ubiquitous devices and terminal readers are encrypted, any extra sources of information retrieved from encrypting module can be exploited to figure out the key parameters, so called side channel attack. Since side channel attacks are based on statistical methods, making side channel signal weak or complex is the proper solution to prevent the attack. Among many countermeasures, shielding the electromagnetic signal and adding noise to the EM signal were examined by applying different thicknesses of thin films of ferroelectric (BTO) and conductors (copper and gold). As a test vehicle, chip antenna was utilized to see the change in radiation characteristics: return loss and gain. As a result, the ferroelectric BTO showed no recognizable effect on both shielding and adding noise. Cu thin film showed increasing shielding effect with thickness. Nanometer Au exhibited possibility in adding noise by widening of bandwidth and red shifting of resonating frequencies.