• Title/Summary/Keyword: Shielded twisted pair cable

Search Result 5, Processing Time 0.024 seconds

Analysis of Shielded Twisted Pair Cable to External Field Coupling by Expanded Chain Matrix Modeling

  • Cho, Yong-Sun;Jung, Hyun-Kyo;Cheon, Changyul;Chung, Young-Seek
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.2049-2057
    • /
    • 2014
  • In this paper, a numerical method for analyzing coupling between high-altitude electromagnetic pulse (HEMP) as external field and a shielded twisted pair (STP) cable is proposed, which is based on an expanded chain matrix. Load responses of electromagnetic (EM) field excitation in uniform transmission line (TL) are solved by Baum-Liu-Tesche (BLT) equations in frequency domain, however, it is difficult to apply BLT equations to solve load responses of STP cable because the iteratively changing configuration of each twisted pairs are involved in cable. To avoid this problem and decrease memory and CPU time, we proposed the expanded chain matrix modeling method that is calculated using ABCD parameters, and applied multi-conductor transmission line (MTL) theory to consider the EMP coupling effectiveness of each twisted pairs. The results implemented by the proposed method are presented and compared with those obtained by the finite-difference time domain (FDTD) method as a kind of 3D full wave analysis.

FDTD Analsysis of Lightning-Induced Voltages on Shielded Telecommunication Cable with Multipoint Grounding

  • Ju, Jae-Cheol;Lee, Hyun-Young;Park, Dong-Chul;Chung, Nak-Sam
    • Journal of electromagnetic engineering and science
    • /
    • v.1 no.1
    • /
    • pp.88-94
    • /
    • 2001
  • In this paper, the lightning-induced voltages on shielded twisted-pair wires with multipoint grounding on cable sheath are calculated by using finite-difference time domain (FDTD) method. The equivalent single-wire line that represents a bundle of twisted-pair wires is adopted for computational efficiency. A finitely conducting ground is also taken into account in both lightning electromagnetic field calculations and surge propagation along the shielded cable for a practical simulation. It is found that multipoint additional grounding on cable sheath provides more shielding effectiveness especially in the early time response of the lightning-induced voltages. From this study, the requirements for lighting surge protection devices in a telecommunication subscriber cab1e can be established.

  • PDF

A Study on the Deterioration Diagnosis of 600V Shielded Twisted Pair Control/Measurement Cable using Resonance Frequency (케이블 공진을 이용한 600V 제어/계측용 꼬임쌍선 차폐 케이블의 열화상태 진단에 대한 연구)

  • Shin, JaeYoung;Kim, KwangHo;Nah, WanSoo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.12
    • /
    • pp.1768-1775
    • /
    • 2015
  • Recent major domestic facilities, such as nuclear power plants, many control cables are installed and are degraded by long-term use, but research on deterioration diagnosis is lacking. In the event of a fault in the cable due to deterioration can be developed into a major accident such as the main plant is stopped, so the deterioration diagnostic techniques of high reliability for the cable is required. In this paper, proposes a methodology using a cable resonance that can effectively diagnose the deterioration of the cable. Prior to the test, we developed a setup for stable measuring the characteristics of the cable and it verified the suitable of the measurement set-up in terms of interactivity and reliability, also measured S-parameters applying verified measurement set-up to the cables that deterioration degree is different. Then, we had amplified the difference in resonance frequency between the healthy state and the deteriorated state using connection in a series of measured S-parameters. In a result from the method, we have verified that the more deteriorate the cables is, the more decrease the resonance frequency is. Measured results are justified by inducing the resonance frequency calculation of the cable from the S- parameters represented by the hyperbolic function formula. VNA(Vector Network Analyzer) for S-parameter measurements used in this study is Agilent E5061B and shielded twisted-pair cables was used for deterioration diagnostic test.

Vulnerability Case Analysis of the High Power Electromagnetic Pulse on Digital Control System (디지털 제어장치의 고출력 전자기펄스에 대한 취약성 사례 분석)

  • Woo, Jeong Min;Ju, Mun-No;Lee, Hong-Sik;Kang, Sung-Man;Choi, Seung-Kyu;Lee, Jae-Bok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.9
    • /
    • pp.698-706
    • /
    • 2017
  • The risk of high power electromagnetic(HPEM) pulse exposure to the devices used in digital control system such as PLC(programmable logic controller) and communication cable is increasing. In this paper, two different frequency ranges HPEMs were exposed to those control systems to assess the each vulnerability. The vulnerability of the EUTs exposed from HPEM were analyzed and compared with a variation of distances and source power. As the EUTs were exposed to higher level of HPEM, the voltage and communication waveform of the control system had shown a distorted response. And the unshielded twisted pair(UTP) cable connected to the EUTs showed operation failures with induced voltage. However, the foiled twisted pair(FTP) cable shielded the connected device efficiently from the HPEM exposure. Therefore, the necessity of the protection measures against the vulnerability of HPEM exposure for the digital control system used in power facilities and industrial site were verified.

Analog Adaptive Pulse shaping and Line Equalizer For 400Mb/s data rate on 50m STP Cable

  • Lee, Hoon;Kwisung Yoo;Gunhee Han
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.887-890
    • /
    • 2003
  • High Speed data transmission over a long length of cable is limited due to the limited bandwidth of a cable which introduces ISI(Inter Symbol Interference). In order to compensate for the loss and phase dispersion in the cable, a pulse shaping in a transmitter and a line equalizer in receiver can be used. This paper presents a low-power and small-ana analog adaptive pulse shaping circuit and line equalizer, The design was fabricated in a 0.25${\mu}{\textrm}{m}$ mixed-signal CMOS process. The proposed pulse shaping circuit and equalizer operate at 400Mb/s on 50m STP(Shielded Twisted Pair) cable. It consumes 28.5${\mu}{\textrm}{m}$ with a 2.5-V power supply and occupies only 0.098 $\textrm{mm}^2$.

  • PDF