• Title/Summary/Keyword: Shield Tunnel

Search Result 254, Processing Time 0.026 seconds

A laboratory pressurized vane test for evaluating rheological properties of excavated soil for EPB shield TBM: test apparatus and applicability (EPB 쉴드 TBM 굴착토의 유동학적 특성 평가를 위한 실내 가압 베인시험: 장비 개발과 적용성 평가)

  • Kwak, Junho;Lee, Hyobum;Hwang, Byeonghyun;Choi, Junhyuk;Choi, Hangseok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.5
    • /
    • pp.355-374
    • /
    • 2022
  • Soil conditioning improves the performance of EPB (earth pressure balance) shield TBMs (tunnel boring machines) by reducing shear strength, enhancing workability of the excavated soil, and supporting the tunnel face during EPB tunnelling. The mechanical and rheological behavior of the excavated muck mixed with additives should be properly evaluated to determine the optimal additive injection condition corresponding to each ground type. In this study, the laboratory pressurized vane test apparatus equipped with a vane-shaped rheometer was developed to reproduce the pressurized condition in the TBM chamber and quantitively evaluate rheological properties of the soil specimens. A series of the pressurized vane tests were performed for an artificial sand soil by changing foam injection ratio (FIR) and polymer injection ratio (PIR), which are the injection parameters of the foam and the polymer, respectively. In addition, the workability of the conditioned soil was evaluated through the slump test. The peak and yield stresses of the conditioned soil with respect to the injection parameters were evaluated through the rheogram, which was derived from the measured torque data in the pressurized vane test. As FIR increased or PIR decreased, the workability of the conditioned soil increased, and the maximum torque, peak stress, and yield stress decreased. The peak stress and yield stress of the specimen from the laboratory pressurized vane test correspond to the workability evaluated by the slump tests, which implies the applicability of the proposed test for evaluating the rheological properties of excavated soil.

Development of shield-TBM scale model system for excavation of curved section (급곡구간 굴착을 위한 쉴드-TBM 축소모형 장비 시스템 개발)

  • Kong, Min-Teak;Kim, Yeon-Deok;Lee, Kyung-Heon;Hwang, Beoung-Hyeon;An, Jun-Kyu;Kim, Sang-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.6
    • /
    • pp.849-860
    • /
    • 2019
  • This paper is a study on the development of equipment system to obtain data on stability in excavation of sharp curve section of Shield TBM. Shield TBM equipment is being used a lot recently for tunnel excavation. Excavation may result in inevitable detours by buildings above the ground or existing underground structures. Preconstruction simulation is required to verify the stability of the construction in case of this. Therefore, it is necessary to establish an automated control system through the development of this equipment system and conduct simulation through simulation of excavation model in the sharp curve section. A system shall be developed to control the left and right angles and thrust of the equipment, and to view data on the earth pressure and propulsion pressure of the equipment in real time during excavation. With this system, the necessary data can be collected for field testing through excavation method and excavation simulation by angle. It is expected that it will be very useful in assessing the actual Shield TBM by conducting a scale-down model experiment.

Tunnelling in Bangkok - Two Case Studies (방콕의 터널공사 - 두 개의 사례연구)

  • Teparaksa, Wanchai;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.7 no.2
    • /
    • pp.153-163
    • /
    • 2005
  • This paper presents two case studies for tunnelling in Bangkok: a subway tunnel site and a flood diversion tunnel site. The first case study is related to ground displacement response for dual tunnel Bangkok MRT subway. The MRT subway project of Bangkok city consists of dual tunnels about 20 km long with 18 subway stations. The tunnels are seated in the firm first stiff silty clay layer between 15-22 m in depth below ground surface. The behavior of ground deformation response based on instrumentation is presented. The back analysis based on plain strain FEM analysis is also presented and agrees with field performance. The shear strain of FEM analysis is in the range of 0.1-1% and in accordance with the results of self boring pressuremeter tests. Meanwhile, the second case study is related to the EPB tunnelling bored underneath through underground obstruction. The Premprachakorn flood diversion tunnel is the shortcut tunnel to divert the flood water in rainy season into the Choapraya river. The tunnel was bored by means of EPB shield tunnelling in very stiff silty clay layer at about 20-24 m in depth. During flood diversion tunnel bored underneath the existing Bangkok main water supply tunnel and pile foundation of the bridge, instrumentation was monitored and compared with predicted FEM analysis. The prevention risk potential by means of predicting damage assessment is also presented and discussed.

  • PDF

A study on hydraulic behaviour and leakage control of segment linings using the numerical method (수치해석을 이용한 세그먼트라이닝의 수리거동과 누수제어 연구)

  • Shin, Jong-Ho;Shin, Yong-Suk;Pam, Dong-In;Chae, Sung-Elm;Choi, Kyu-Hoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.2
    • /
    • pp.131-140
    • /
    • 2009
  • It has been repeatedly reported that a drainage system of a drained tunnel is deteriorated. And consequently the water pressure on the lining increases with time. However, little research on the watertight tunnel was found in the literatures. According to field measurements, leakage of the undrained tunnel has increased with time, which is completely opposite to the behavior of the drained tunnel. It is evident that the hydraulic deterioration of the tunnel lining changes the water pressure on the lining and the amount of leakage, thus the design coneept in terms of groundwater is not maintained tightly throughout the life time of the tunnel. The Segment lining is generally constructed as watertight. However, it is frequently reported that the leakage in the segment tunnel increases with time. It is also reported that the leakage is generally concentrated at the joints of the segments. In this study structural and hydraulic interaetion of the segment lining due to the hydraulic deterioration of the segments and the joints is investigated using the numerical modeling method. An electric utility tunnel below groundwater table is considered for the analyses. The effects of hydraulic deterioration of the segment lining are identified in terms of ground loading, water pressure and lining behavior. A remedial grouting measure for leakage is also numerically simulated, and its appropriateness is evaluated.

Analysis of segment lining cracking load considering axial force by varying boundary condition (경계조건 변화에 의해 발생한 축력을 고려한 세그먼트 라이닝의 균열하중 분석)

  • Lee, Gyu-Phil;Bae, Gyu-Jin;Kang, Tae-Sung;Chang, Soo-Ho;Choi, Soon-wook
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.2
    • /
    • pp.173-180
    • /
    • 2014
  • In the design of tunnel segment structure, axial and moment forces are considered as significant forces. Since axial force is much greater than moment force, the whole section of segment remains in compression. Therefore crack width can be reduced. But the axial force is not considered in criteria for serviceability check. This fact leads service condition more severe compared to ultimate condition and makes the required steel reinforcement increase to meet the serviceability criteria. In this study, the effect of axial force on serviceability of tunnel segment is evaluated, experimentally and analytically. Mock-up tests on segments with actual size were performed and investigated in terms of initial crack resistance. The evaluation proves that more comprehensive design could be achieved when the axial force is considered in the procedure for the serviceability check in design of tunnel segment.

The Behaviours of Existing Tunnels in response to Multiple side-by-side Tunnel Construction in Soft Ground (연약지반 다수의 터널 병렬시공 시 기존터널의 거동)

  • Ahn, Sung Kwon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.6
    • /
    • pp.193-204
    • /
    • 2008
  • This paper describes laboratory experiments modelling multiple tunnel construction in soft ground. A series of small-scale model tests have been conducted at approximately 1/50 scale in order to investigate the behaviours of existing tunnels in response to the construction of new tunnels in close proximity. The model tunnels were constructed in a consolidated Speswhite Kaolin clay using a tunnelling device involving an auger type cutter within a shield. Strain gauges and LVDTs were used for instrumenting the existing tunnels. The findings obtained from the analyses of these tests were compared to the field measurements involving the reconstruction of the Northern Line London Underground Ltd. tunnels at Old street, United Kingdom. The results were also compared to the ground movement measurements obtained from a separate set of tests undertaken using the same apparatus and experimental procedures.

Analysis of Advanced Rate and Downtime of a Shield TBM Encountering Mixed Ground and Fault Zone: A Case Study (단층대와 복합지반을 통과하는 쉴드TBM의 굴진율 및 다운타임 발생 특성 분석)

  • Jeong, Hoyoung;Kim, Mincheol;Lee, Minwoo;Jeon, Seokwon
    • Tunnel and Underground Space
    • /
    • v.29 no.6
    • /
    • pp.394-406
    • /
    • 2019
  • Difficult ground conditions (e.g., fault zone and mixed grounds) are highly probable to appear in subsea and urban tunnels because of the shallow working depth and alluvial characteristics. TBM usually experienced decrease of penetration rate and increase of downtime when it meets these difficult ground conditions. The problems are usually caused by the adverse geological conditions, and it is preferable to determine the optimal operational parameters of TBM based on the previous operational data obtained while excavating a preceding tunnel. This study carried out for efficient TBM excavation in fault zone and mixed grounds. TBM excavation data from the tunnel site in Singapore and the characteristics of the TBM excavation data was analyzed. The key operational parameters (i.e., thrust, torque, and RPM), penetration rate, and downtime were highly influenced by the presence of fault zones and mixed grounds, and the features was discussed. It is expected that the results and main discussions will be useful information for future tunneling projects in similar geological conditions.

A simple test method to evaluate workability of conditioned soil used for EPB Shield TBM (토압식 쉴드 TBM 굴진을 위한 화강풍화토의 컨디셔닝을 평가하는 간편 시험법)

  • Kim, Tae-Hwan;Kwon, Young-Sam;Chung, Heeyoung;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.6
    • /
    • pp.1049-1060
    • /
    • 2018
  • Soil conditioning is one of the key factors for successfull tunnel excavations utilizing the earth pressure-balanced (EPB) shield tunnel boring machine (TBM) by increasing the tunnel face stability and extraction efficiency of excavated soils. In this study, conditioning agents are mixed with the weathered granite soils which are abundant in the Korean peninsula and the workability of the resulting mixture is evaluated through the slump tests to derive and propose the most suitable conditioning agent as well as the most appropriate agent mix ratios. However, since it is cumbersome to perform the slump tests all the time either in the laboratory or in-situ, a simpler test may be needed instead of the slump test; the fall cone test was proposed as a substitute. In this paper, the correlation between the slump value obtained from the slump test and the cone penetration depth obtained from the proposed fall cone test was obtained. Test results showed that a very good correlation between two was observed; it means that the simpler fall cone test can be used to assess the suitability of the conditioned soils instead of the more cumbersome slump test.

Numerical Evaluation of Forces on TBM during Excavation in Mixed Ground Condition by Coupled DEM-FDM (개별요소법 및 유한차분법 연계 모델을 활용한 복합지반 TBM 굴진 시 TBM에 작용하는 힘의 수치해석적 분석)

  • Choi, Soon-Wook;Lee, Hyobum;Choi, Hangseok;Chang, Soo-Ho;Kang, Tae-Ho;Lee, Chulho
    • Tunnel and Underground Space
    • /
    • v.31 no.6
    • /
    • pp.549-560
    • /
    • 2021
  • Forces exerted on a shield TBM (tunnel boring machine) such as cutter head torque, thrust force, chamber pressure, and upward force are key factors determining TBM performance. However, the forces acting on the TBM when tunnelling the mixed ground have different tendencies compared to that of the uniform ground, which could impair TBM performance. In this study, the effect of mixed ground tunnelling was numerically investigated with torque, thrust force, chamber pressure, and upward force. A coupled discrete element method (DEM) and finite difference method (FDM) model for TBM driving model was used. This numerical study simulates TBM tunnelling in mixed ground composed of upper weathered granite soil and lower weathered rock. The effect on the force acting on the TBM according to the location and slope of the boundary of the mixed ground was numerically examined.

Comparative risk analysis of NATM and TBM for mixed-face large-diameter urban tunneling (도심지 대단면 복합지반 NATM 과 TBM 터널공법의 비교위험도 분석)

  • Kim, Young-Geun;Moon, Joon-Shik;Shim, Jai-Beom;Lee, Seung-Bok;Choi, Chang-Rim;Chun, Youn-Chul
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.1
    • /
    • pp.19-32
    • /
    • 2011
  • The risk assessment is essential for tunnel design in order to minimize risks associated with uncertainty about geological conditions and tunneling method. This paper provides a comparative risk analysis of a large single bore TBM driven tunnel against sequentially excavated NATM tunnel for a mixed-face large-diameter urban tunnel project near or under a river. The focus of this assessment is on the risks associated with the tunnel excavation methods, in particular whether a TBM or NATM presents more or less risk to achieve the planned excavation duration and bring the project within the estimated bid price. First, the impacts and risks to tunnel construction under each method were discussed, and the risks were scored and ranked in the order of perceived severity and likelihood. Finally, the assessment from a risk based perspective was conducted to decide which alternate tunneling method is more likely to deliver the project with the least time and cost. It is very important to note that this study is only applied to this tunnel project with specific geological conditions and other contract requirements.