• 제목/요약/키워드: Shield Tunnel

검색결과 254건 처리시간 0.022초

SEMI-SHIELD 공법의 설계 및 시공상 문제점 (Design and Construction Problems of Semi-Shield Method)

  • 김종인;정성남;박영건
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 세계 도시지반공학 심포지엄
    • /
    • pp.1275-1282
    • /
    • 2009
  • The tunnel excavations are used for construction of common utility tunnel, electric tunnel, communication line tunnel, water supply and public sewerage pile line in urban area. The trench cut methods were mainly used in the past, but now, tunneling method is more being used. The tunnel excavation method like as NATM, Messer-Shield, Semi-Shield Methods are being applied to small section tunnel in Korea. The actual construction results of seme-shield method are increasing due to simplified construction process and reduced noise and vibration. And also this method is being used frequently in waterway tunnel and construction of prevention flooding recently. The seme-shield method design guideline is absence except for electric line tunnel construction in Korea, because of the semi-shield method was developed in Europe and Japan. In the prescriptive design, engineer's subjects are tending to intervene, because of absence of standard and specification for details. Therefore, Design and Construction Problems of Semi-Shield Method were described and construction trouble was introduced for exam. These problem and construction troubles have to be examined thoroughly in advance.

  • PDF

Settlement behaviours and control measures of twin-tube curved buildings-crossing shield tunnel

  • Jianwei, Jia;Ruiqi, Gao;Defeng, Wang;Jianjun, Li;Ziwen, Song;Jinghui, Tan
    • Structural Engineering and Mechanics
    • /
    • 제84권5호
    • /
    • pp.699-706
    • /
    • 2022
  • Settlement control techniques are critical for the safety of shield tunnel constructions, especially for facing complex situations. In this study, the shield tunnel structure from Huaita east road station to Heping Road station in Xuzhou metro No.3 line (China) is taken as engineering background, which has various complex problems of the upper-soft and lower-hard composite stratum conditions, twin curve shield tunnels, and underpass the foundation of the piled raft. The deformation characteristics of shield tunnelling passing through buildings are explored. Subsequently, comprehensive research methods of numerical simulation and field measurement are adopted to analyzing the effectiveness of settlement control by using the top grouting technique. The results show that the settlement of the buildings has obvious spatial characteristics, and the hysteresis effect can be obviously observed in soil deformation caused by shield construction. Meanwhile, the two shield constructions can cause repeated disturbances, reducing the soil deformation's hysteresis effect. Moreover, the shield tunnel's differential settlement is too large when a single line passes through, and the shield construction of the outer curve can cause more significant disturbance in the tunnel than the inside curve. Notably, the proposed process control parameters and secondary topgrouting method can effectively control the deformation of the shield tunnel, especially for the long-term deformation.

Stability evaluation for the excavation face of shield tunnel across the Yangtze River by multi-factor analysis

  • Xue, Yiguo;Li, Xin;Qiu, Daohong;Ma, Xinmin;Kong, Fanmeng;Qu, Chuanqi;Zhao, Ying
    • Geomechanics and Engineering
    • /
    • 제19권3호
    • /
    • pp.283-293
    • /
    • 2019
  • Evaluating the stability of the excavation face of the cross-river shield tunnel with good accuracy is considered as a nonlinear and multivariable complex issue. Understanding the stability evaluation method of the shield tunnel excavation face is vital to operate and control the shield machine during shield tunneling. Considering the instability mechanism of the excavation face of the cross-river shield and the characteristics of this engineering, seven evaluation indexes of the stability of the excavation face were selected, i.e., the over-span ratio, buried depth of the tunnel, groundwater condition, soil permeability, internal friction angle, soil cohesion and advancing speed. The weight of each evaluation index was obtained by using the analytic hierarchy process and the entropy weight method. The evaluation model of the cross-river shield construction excavation face stability is established based on the idea point method. The feasibility of the evaluation model was verified by the engineering application in a cross-river shield tunnel project in China. Results obtained via the evaluation model are in good agreement with the actual construction situation. The proposed evaluation method is demonstrated as a promising and innovative method for the stability evaluation and safety construction of the cross-river shield tunnel engineerings.

서울지하철 7호선연장 703공구 대구경 쉴드터널 설계 (Design of a large shield tunnel in Seoul subway line No.7 extension project(703 section))

  • 김용일;임종윤;정두석;이상한;황낙연;박광준
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2005년도 추계학술대회 논문집
    • /
    • pp.424-442
    • /
    • 2005
  • In this paper a design of a large shield Tunnel through weathered soil and weathered rock in 703 section of seoul subway line No.7 extension project is presented. The geological investigation results show that the projecet region consists mostly of weathered soil with some local weathered rock in the tunnel excavation level. A EPB shield TBM is selected as a optimal excavation machine for the large shield Tunnel considering the geological and site conditions. Also, the shield machine head and cutter for the large shield tunnel type are designed considering site geological conditions and average advance rate in similar projects.

  • PDF

Study on seismic behavior and seismic design methods in transverse direction of shield tunnels

  • He, Chuan;Koizumi, Atsushi
    • Structural Engineering and Mechanics
    • /
    • 제11권6호
    • /
    • pp.651-662
    • /
    • 2001
  • In order to investigate the seismic behavior and seismic design methods in the transverse direction of a shield tunnel, a series of model shaking table tests and a two-dimensional finite element dynamic analysis on the tests are carried out. Two kinds of static analytical methods based on ground-tunnel composite finite element model and beam-spring element model are proposed, and the validity of the static analyses is verified by model shaking table tests. The investigation concerns the dynamic response behavior of a tunnel and the ground, the interaction between the tunnel and ground, and an evaluation of different seismic design methods. Results of the investigation indicate that the shield tunnel follows the surrounding ground in displacement and dynamic characteristics in the transverse direction; also, the static analytical methods proposed by the authors can be used directly as the seismic design methods in the transverse direction of a shield tunnel.

Pipeline deformation caused by double curved shield tunnel in soil-rock composite stratum

  • Ning Jiao;Xing Wan;Jianwen Ding;Sai Zhang;Jinyu Liu
    • Geomechanics and Engineering
    • /
    • 제36권2호
    • /
    • pp.131-143
    • /
    • 2024
  • Shield tunneling construction commonly crosses underground pipelines in urban areas, resulting in soil loss and followed deformation of grounds and pipelines nearby, which may threaten the safe operation of shield tunneling. This paper investigated the pipeline deformation caused by double curved shield tunnels in soil-rock composite stratum in Nanjing, China. The stratum settlement equation was modified to consider the double shield tunneling. Moreover, a three dimensional finite element model was established to explore the effects of hard-layer ratio, tunnel curvature radius, pipeline buried depth and other influencing factors. The results indicate the subsequent shield tunnel would cause secondary disturbance to the soil around the preceding tunnel, resulting in increased pipeline and ground surface settlement above the preceding tunnel. The settlement and stress of the pipeline increased gradually as buried depth of the pipeline increased or the hard-layer ratio (the ratio of hard-rock layer thickness to shield tunnel diameter within the range of the tunnel face) decreased. The modified settlement calculation equation was consistent with the measured data, which can be applied to the settlement calculation of ground surface and pipeline settlement. The modified coefficients a and b ranged from 0.45 to 0.95 and 0.90 to 1.25, respectively. Moreover, the hard-layer ratio had the most significant influence on the pipeline settlement, but the tunnel curvature radius and the included angle between pipeline and tunnel axis played a dominant role in the scope of the pipeline settlement deformation.

대심도 해저 쉴드터널 안전시공을 위한 계측관리 (Monitoring management for safely construction of deep shield tunnel)

  • 유길환;김영수;황대영;곽정민;정성교
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.319-326
    • /
    • 2002
  • During the construction period of submarine shield tunnel, which is built firstly in very soft marine clay layer 40m deep in Korea, wide range problems were encountered such as safe launching against high earth pressure at shield entrance, technique of shield face pressure control when passing through complex multi-layered soils This paper introduces successful construction practice through development of state-of-the-art construction method and field monitoring.

  • PDF

축소모형실험을 통한 급곡선 터널에서의 Shield TBM 추진 압력 적용 기술에 대한 연구 (Application technique on thrust jacking pressure of shield TBM in the sharp curved tunnel alignment by model tests)

  • 강시온;김협;김용민;김상환
    • 한국터널지하공간학회 논문집
    • /
    • 제19권2호
    • /
    • pp.335-353
    • /
    • 2017
  • 본 연구는 축소모형 실험을 통하여 급곡선 터널에서의 쉴드 TBM 추진압력 적용 기술에 대한 논문이다. 최근 한국의 도심지 지역에서 NATM 터널 공사에 발생하는 진동 및 소음 문제를 예방하기 위해 기계식 터널공법인 쉴드 TBM 공법의 적용이 증가하고 있다. 그러나 건물 기초 및 지하 구조물을 피하기 위해 터널 선형이 급곡선으로 계획하여야 하며 쉴드 TBM 추진압력 시스템에 대한 적용 기술의 개발이 요구된다. 따라서 곡선구간에 대한 쉴드 TBM 굴진 시 영향을 주는 주요 요소들에 대하여 시공자료와 이론적 접근방법에 대하여 검토 및 분석을 실시하였다. 분석결과로부터 쉴드 TBM 추진압력 시스템에 대한 기술이 급곡선 터널에 있어서 가장 중요한 것으로 나타났다. 또한 지반과 쉴드 TBM 헤드부의 상호 거동에 대한 실질적인 상황을 시뮬레이션 하기 위하여 축소모형시험을 실시하였다. 2가지의 서로 다른 쉴드 추진력과 여러 중절각도에 따라 쉴드 TBM 헤드에 가해지는 지반압력에 대하여 측정하였다. 이 실험으로부터 얻어진 결과를 분석 하였다. 이들 결과는 급곡구간 터널에서 쉴드 TBM 추진 압력에 따른 쉴드 TBM 헤드부의 상호거동에 대한 이해와 운영기술 발전에 매우 유용할 것이다.

병렬 쉴드터널의 이격거리와 적용사례 (Distance between the Parallel Shield tunnel and Application)

  • 곽철홍;김재영;김동현;이두화;이승복;김응태;심재범
    • 한국터널공학회:학술대회논문집
    • /
    • 한국터널공학회 2005년도 학술발표회 논문집
    • /
    • pp.225-232
    • /
    • 2005
  • The construction of parallel tunnel by using the shield TBM method was increased recently. Accordingly the application and the propriety of the parallel shield TBM tunnels were studied through domestic and foreign construction cases herein. Also the behavior of tunnel structure and ground was evaluated by a numerical analysis with various ground conditions and the distance between the parallel tunnels. As a result, it was concluded that a deep investigation as well as a ground reinforcement was required with a ratio(L/D) of the distance between the parallel tunnels(L) to tunnel outer diameter(D) less than 0.5 because the Interference phenomenon was expected to occur. And the appropriateness of the application method of parallel shield TBM tunnel was validated through the 2-dimensional numerical analysis simulated the process of excavation after the ground reinforcement in the starting area of the OOO construction site with the ratio(L/D) of 0.35.

  • PDF

한강하저터널의 쉴드TBM 적용시 디스크 커터 소모량 예측과 소모량 (Disc Cutter Consumptions Prediction on Applying Shield TBM at the Han Riverbed Tunnel)

  • 최정명;정혁상;천병식;이용주
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 춘계 학술발표회
    • /
    • pp.562-570
    • /
    • 2010
  • This study was conducted to estimate the number of disc cutter consumption and to predict amount of disc cutters when a shield TBM(Tunnel Boring Machine) of the Han Riverbed Tunnel was applied. In fact, it is almost impossible to change the machine after starting the excavation using the shield TBM method. Therefore, it is important to design an appropriate equipment in the shield method - an efficiency choice of the operation equipment plays a key role in the shield tunnel processing. For the above reason, the disc cutter consumption prediction is quite important so that the detailed analysis is required. A number of disc cutter consumption was predicted by the three methods, viz. KOMATSU, MITSUBISHI and NTNU. In addition, the predicted results were compared with field data. The prediction of disc cutter consumption showed that 237 for KOMATSU, 501 for MITSUBISHI, and 634 for NTNU, respectively. However, a total number of 1,263 disc cutter consumption were investigated during the tunnel construction. It was found that there was a huge difference between the predicted and real values of the disc cutter consumption. The more detailed investigation showed that the disc cutter was worn out bluntly in the northbound tunnel, meanwhile it was worn out sharply in the southbound tunnel. In particular, the disc cutter consumption in the southbound tunnel was increased rapidly because of rear abrasion for remaining mucks in the chamber.

  • PDF