• Title/Summary/Keyword: Shell plate

Search Result 428, Processing Time 0.03 seconds

Experimental Study on Heat Transfer and Pressure Drop Characteristics for Single-Phase Flow in Plate and Shell Heat Exchangers. (Plate and Shell 열교환기의 단상유동 열전달 및 압력강하 특성에 관한 실험적 연구)

  • 서무교;김영수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.4
    • /
    • pp.422-429
    • /
    • 2000
  • Plate and shell heat exchanger(P&SHE) is widely applied as evaporators or condensers in the refrigeration and air conditioning systems for their high efficiency and compactness. In order to set up the database for the design of the P&SHE, heat transfer and pressure drop characteristics for single phase flow of water in a plate & shell heat exchanger are experimentally investigated in this study. Single phase heat transfer coefficients were measured for turbulent water flow in a plate and shell heat exchangers by Wilson plot method. The shell side heat transfer resistance was varied and the overall heat transfer coefficients were measured. The single-phase heat transfer coefficients in a plate side were obtained by Wilson plot method. Single-phase heat transfer correlations based on projected heat transfer area and friction factor correlations have been proposed for single phase flow in a plate and shell heat exchanger.

  • PDF

A study on the pressure drop characteristics of plate and shell heat exchangers (Plate and Shell 열교환기의 압력강하 특성에 관한 연구)

  • Seo, Moo-Kyo;Kim, Young-Soo
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.25-30
    • /
    • 2000
  • Plate and shell heat exchanger(P&SHE) has been applied to the refrigeration and air conditioning systems as evaporators or condensers fur their high efficiency and compactness. The purpose of this study is to analyze the characteristics of pressure drop in plate and shell heat exchanger. An experiment for single phase (low pressure drop in plate and shell heat exchanger was performed. Also numerical work was conducted using the FLUENT code for $ {\kappa}-{\varepsilon}$ model. The dependence of friction factor on geometrical Parameters was numerically investigated. The study examines the internal flow and the pressure distribution in the channel of plate and shell heat exchanger. The results of CFD analysis compared with experimental data, and the difference of frictor factor in plate side and shell side are 10% and 12%, respectively. Therefore, the CFD analysis model is effectively predict the performance of plate and shell heat exchanger.

  • PDF

Vibration Analysis of Annular Plate Combined Cylindrical Shells Considering Additional Deformations (추가변형을 고려한 환원판 결합 원통셸의 진동해석)

  • Kim, Young-Wann;Chung, Kang
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.551-556
    • /
    • 2004
  • The theoretical method is developed to investigate the vibration characteristics of the combined cylindrical shells with an annular plate joined to the shell at any arbitrary axial position. The structural rotational coupling between shell and plate is simulated using the rotational artificial spring. For the translational coupling, the continuity conditions for the displacements of shell and plate are used. For the uncoupled annular plate, the transverse motion is considered and the in-plane motions are not. And the additional transverse and in-plane motions of the coupled annular plate by shell deformation are considered in analysis. Theoretical formulations are based on Love's thin shell theory. The frequency equation of the combined shell with an annular plate is derived using the Rayleigh-Ritz approach. The effect of inner-to-outer radius ratio, axial position and thickness of annular plate on vibration characteristics of combined cylindrical shells is studied. To demonstrate the validity of present theoretical method, the finite element analysis is performed.

  • PDF

Thermal Performance Analysis of a Shell-and-Tube Heat Exchanger with Plate Fins of Various Shape (다양한 형상의 판형 휜을 장착한 원통다관형 열교환기의 열성능 해석)

  • 신지영;손영석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.4
    • /
    • pp.648-656
    • /
    • 2004
  • In this study, a highly efficient shell-and-tube heat exchanger with plate fins is considered to improve thermal performance of the conventional shell-and-tube heat exchanger. This type of shell-and-tube heat exchanger with plate fins of various shape is simulated three-dimensionally using a commercial thermal-fluid analysis code. CFX4.4. The effect of the shape of the plate fin on heat transfer characteristics is also investigated by the simulation. Plate fins of four different shapes. plane, plane-slit. wave. and wave-slit fins, are considered. The flow fields, pressure drop and heat transfer characteristics in the heat exchanger are calculated. It is proved that the shell-and-tube heat exchanger with plate fins is superior to the conventional shell-and-tube heat exchanger without plate fins in terms of heat transfer. The shape of the plate fin is important in the performance of a heat exchanger such as heat transfer and pressure drop.

Numerical study of dynamic buckling for plate and shell structures

  • Liu, Z.S.;Lee, H.P.;Lu, C.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.2
    • /
    • pp.241-257
    • /
    • 2005
  • A numerical approach combining the finite element method with two different stability criteria namely the Budiansky and the phase-plane buckling criteria is used to study the dynamic buckling phenomena of plate and shell structures subjected to sudden applied loading. In the finite element analysis an explicit time integration scheme is used and the two criteria are implemented in the Finite Element analysis. The dynamic responses of the plate and shell structures have been investigated for different values of the plate and shell imperfection factors. The results indicate that the dynamic buckling time, which is normally considered in predicting elasto-plastic buckling behavior, should be taken into consideration with the buckling criteria for elastic buckling analysis of plate and shell structures. By selecting proper control variables and incorporating them with two dynamic buckling criteria, the unique dynamic buckling load can be obtained and the problems of ambiguity and contradiction of dynamic buckling load of plate and shell structure can be resolved.

Experimental Study on Heat Transfer Characteristics for Single-phase Flow in Plate & Shell Heat Exchangers by Using Wilson Plot Method (Wilson plot법을 이용한 Plate & Shell 열교환기의 단상유동 열전달 특성에 관한 실험적 연구)

  • Seo, M.K.;Kim, Y.S.;Lee, S.K.
    • Journal of Power System Engineering
    • /
    • v.3 no.4
    • /
    • pp.22-27
    • /
    • 1999
  • Single phase heat transfer coefficients were measured for turbulent water flow in a plate & shell heat exchangers by using Wilson plot method. An experiment for counterflow heat exchange between the plate and shell was performed. The shell side heat transfer resistance was varied and the overall heat transfer coefficients were measured. The single-phase heat transfer coefficients in a plate side were obtained by Wilson plot method. Single-phase heat transfer correlations based on projected heat transfer area have been proposed for a plate & shell heat exchanger.

  • PDF

Free Vibration Analysis of a Curvatured Plate Welded to a Clamped-Free Circular Cylindrical Shell (곡률 원판이 결합된 외팔 원통 쉘의 고유진동 해석)

  • Yim, J.S.;Sohn, D.S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.529-534
    • /
    • 2002
  • The receptance method was applied for the analysis of a cylindrical shell with a curvaturated plate attached at the top of the shell. The boundary conditions of the shell considered here were clamped at the bottom and free at the top of the shell. Before the analysis of the shell/plate combined structure, the natural frequencies of the plate and the shell were calculated separately and then they were used in the calculation of the frequencies of the combined structure by the receptance method. The frequency equation of the combined structure was derived from the continuity condition at the junction of the shell and the plate. The frequencies for various curvature factors of the plate were presented and compared with those from ANSYS to show its validity of the present method.

  • PDF

Free Vibration Analysis of Combined Cylindrical Shells with an Annular Plate Considering Additional Deformations (추가변형을 고려한 환원판 결합 원통셸의 자유진동해석)

  • Chung Kang;Kim Young-Wann
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.3 s.234
    • /
    • pp.439-446
    • /
    • 2005
  • The theoretical method is developed to investigate the vibration characteristics of the combined cylindrical shells with an annular plate joined to the shell at any arbitrary axial position. The structural rotational coupling between shell and plate is simulated using the rotational artificial spring. For the translational coupling, the continuity conditions for the displacements of shell and plate are used. For the uncoupled annular plate, the transverse motion is considered and the in-plane motions are not. And the additional transverse and in-plane motions of the coupled annular plate by shell deformation are considered in analysis. Theoretical formulations are based on Love's thin shell theory. The frequency equation of the combined shell with an annular plate is derived using the Rayleigh-Ritz approach. The effect of inner-to-outer radius ratio, axial position and thickness of annular plate on vibration characteristics of combined cylindrical shells is studied. To demonstrate the validity of present theoretical method, the finite element analysis is performed.

Experimental Study on Heat Transfer Performance of Oil Cooler (오일 쿨러의 열전달 성능에 관한 실험적 연구)

  • Cho, Dong-Hyun;Lim, Tae-Woo
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2328-2333
    • /
    • 2008
  • The experimental study was carried out to evaluate the heat transfer performance on the shell side of shell-and-plate finned tube heat exchanger with three different tube numbers(9, 13 and 19). Oil flowing on the shell side was cooled by cold water flowing inside the tubes. A shell-and-tube heat exchanger of an oil cooler consisted of one shell pass and two tube passes with the inner tube diameter of 8.82 mm and the tube length of 575 mm. Mass flow rate was varied from 1.2 to $6.0\;m^3/h$ for oil and from 0.6 to $3.0\;m^3/h$ for cold water, respectively. From the experiment of shell-and-plate finned tube heat exchanger, the shell side heat transfer coefficient of heat exchanger with 9 tubes was compared with that of 13 and 19 tubes. It was found that the heat exchanger with 9 plate finned tubes showed more performance of heat transfer than that of 13 and 19 tubes.

  • PDF

Vibration Analysis of Combined Cylindrical Shells with an Annular Plate (환원판이 결합된 원통셸의 진동해석)

  • Kim, Young-Wann;Chung, Kang
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.10
    • /
    • pp.767-776
    • /
    • 2003
  • The theoretical method is developed to Investigate the nitration characteristics of the combined cylindrical shells with an annular plate joined to the shell at any arbitrary axial position. The structural coupling between shell and plate is simulated using two types of artificial springs a translational spring is introduced for translational coupling and a rotational spring is used for rotational coupling. The springs are continuously distributed along circumferential direction. Using the Rayleigh-Ritz method the natural frequencies and mode shapes of the combined shell with an annular plate examine. The effect of Inner-to-outer radius ratio, axial position of annular plate and length-to-radius ratio of shell on vibration characteristics of combined cylindrical shells is studied. The theoretical results are verified by comparison with FEM results.