• Title/Summary/Keyword: Shell forming

Search Result 135, Processing Time 0.025 seconds

Finite Element Analyses on Local Buckling Strength of Polygonal-Section Shell Towers (축방향 압축을 받는 다각형 단면 쉘 기둥구조의 국부좌굴강도에 관한 해석적 연구)

  • Park, Seong-Mi;Choi, Byung-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.4
    • /
    • pp.1900-1907
    • /
    • 2012
  • Since the subpanels of polygonal-section shell have the corners of an obtuse angle larger than 90 degree unlike general plate or box-section structures, this could have an influence on forming nodal lines against local plate buckling or stress distributions. However, there is not sufficient material in the relevant study results or design recommendations. The very feasible models of the initial imperfections were acquired through the literature studies and then the parametric studies were conducted along with the initial imperfection models by using the finite element method. The parameters like the size of residual stresses, the portion of compressive residual stresses, and steel grades were considered. From the parametric studies, it was found that the maximum residual stress is more influential factor than the distribution pattern of residual stresses. In addition, The design strength equations for the simply supported plates can be applicable to the determination of the local buckling strength of the polygonal cross-section shell structures.

Plastic Deformation Analysis of Rotating Band by Three-Dimensional Finite Element Method Using Recurrent Boundary Condition (반복경계조건을 도입한 3차원 유한요소법에 의한 회전탄대의 소성변형 공정해석)

  • 양동열;이영규;박용복;조용찬;한만준
    • Transactions of Materials Processing
    • /
    • v.5 no.2
    • /
    • pp.122-129
    • /
    • 1996
  • The main objective of the study is to offer some basic information in relation to optimal shape and dimensions of the rotating band through the development of three-dimensional finite element method for metal forming analysis of the rotating band whose primary function is to impart spin to the projectile. The three-dimensional metal forming analysis of the rotating band has perfor-med by using recurrent boundary conditions. Such design factors as the outside diameter the total length and the profile of the rotating band must be considered carefully in order to design an optimal rotating band. Above design factors can be determined from such available analysis results as the deformed shape and the deformation load. of the rotating band and the normal pressure of the rotating band on a projectile shell. The remeshings are needed to carry out plastic deformation analysis with severe deformation through which the complete process analysis gets possible. The results can be utilized effectively in determining the optimal shape and size of the rotating band.

  • PDF

A Study on the Plastic Forming by Rotary Swaging Process (Rotary Swaging 공법을 적용한 탄체 소성가공에 관한 연구)

  • Shon, Byoung-Chul;Lee, Ho-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.672-678
    • /
    • 2020
  • Ogive parts of large-caliber ammunition in Korea are manufactured by the Press Nosing method, but this method has the disadvantage of requiring additional processes such as lubrication before and after the press process. This study proposes the possibility of applying the Swaging method to improve these shortcomings. A large-diameter shell body was manufactured in sub-scale and plastic working experiments using a swaging process were performed. We investigated whether plastic processing is possible up to 75 % of the diameter reduction rate that satisfies the final molding dimension, and whether the dimensions of the product produced by swaging molding are satisfactory as the hardness changes according to the diameter reduction rate and the increase in thickness. The test using the prototype confirmed that the hardness increased proportionally with the diameter reduction rate and by more than HV 335 at the reduction rate of 75 %. The material thickness variation tended to be similar to the theoretical calculated value, and the thickness increase rate was proportional to 65.4 % at the reduction rate of 75 %.

Study of Oil Palm Biomass Resources (Part 2) - Manufacturing Characteristics of Pellets Using Oil Palm Biomass- (오일팜 바이오매스의 자원화 연구 II - 오일팜 바이오매스의 펠릿 제조 특성 -)

  • Sung, Yong Joo;Kim, Chul-Hwan;Cho, Hu-Seung;Kim, Sung-Ho;Sim, Sung-Woong;Yim, Su-Jin;Lee, Ji-Young;Kim, Se-Bin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.45 no.1
    • /
    • pp.42-51
    • /
    • 2013
  • In this study, oil palm biomass such as empty fruit bunch (EFB) and palm kernel shell (PKS) was used as raw materials for making pellets. Hardwood sawdusts were also mixed with EFB and PKS for making pellets. For improving a bad forming behavior in a pelletizer, 1 to 3 per cent of corn starch based on oven-dried weight biomass was added. The starch contributed to the decrease of dust generation in addition to the improvement of forming capability during pellet forming. Heating values of every pellets made of EFB and PKS were higher than 4,300 kcal/kg for the first grade pellet, irrespective of addition of sawdusts. However, the pellets made of EFB and PKS had ash contents over 3 per cent, which made it impossible to be applied for home use. Instead, they could be applied for industrial use. For studying their combustion characteristics, the pellets from the mixtures of EFB, PKS and sawdusts were analyzed using thermal gravimetric analyzer (TGA). From the TGA results, thermal decomposition of EFB and PKS occurred following three including endothermic reaction and dehydration, devolatilization of the major chemical components, and finally combustion of residual lignin and char.

A Study on Automation of Steel Plate Forming by Heating Method (열간가공에 의한 강판의 곡 가공 자동화 시스템)

  • B.I. Lee;H.S. Yoo;G.G. Byun;H.G. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.39 no.2
    • /
    • pp.34-44
    • /
    • 2002
  • Approximately 70 percent of shop's hull plate consists of three-dimensional curved shell. Concerning with the research on the automation of plate forming many studies have been carried out for the last decade. The purpose of this study is to develop the simulator of heating on the basis of the reasonable mechanical model representing a heating phenomenon. The beating experiment has been carried out with varying parameters influencing on the results of heating information at the kinematics analysis, simulatorestimate the shape of deformed plate that process along the processing information. When we get the initial shape and the object shape, we calculate the processing information first, using kinematics analysis. In a simulator we estimate deformed shape from the processing information. After this we compare deformed shape and object shape. If the error of deformed shape and object shape is in the proper limits, that information is determined the final processing information. Else we repeat the process changing variable.

Realtime Simulation of Deformation due to Line Heating for Automatic Hull Forming System (곡가공 자동화 시스템을 위한 선상가열에 의한 변형의 실시간 시뮬레이션)

  • Dae-Eun Ko;Chang-Doo Jang;Seung-Il Seo;Hae-Woo Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.4
    • /
    • pp.116-127
    • /
    • 1999
  • Line heating is a method widely used in forming ship hull surface. From the viewpoint of mechanics it is large deformation thermal elasto-plastic problem of arbitrary shaped plate. Many researches have been carried out to resolve this problem. Especially, Jang et al.[1] proposed a simplified thermal elasto-plastic analysis method to predict effectively the deformation of plate due to line heating. In this paper, we improved the method of Jang et al.[1] by considering tension yielding in temperature decreasing stage and verified with experimental results. FEA program using MITC4 degenerated shell element was made to deal with elastic large deformation problem. The newly proposed method can be used in the simulation and control of forming hull surface for higher productivity with simplicity and efficiency.

  • PDF

Mollusk Species Associated with the Scleractinian Coral Alveopora japonica Eguchi, 1968 Forming a Coral Carpet in Northwestern Jeju Island

  • Ronald G., Noseworthy;Hyun-Ki, Hong;Se-Jong, Ju;Hyun-Sung, Yang;Kwang-Sik, Choi
    • Ocean and Polar Research
    • /
    • v.44 no.4
    • /
    • pp.331-338
    • /
    • 2022
  • The high latitude scleractinian coral Alveopora japonica Eguchi, 1965 occurs in high density in the shallow rocky subtidal in Jeju Island, forming coral carpets. Despite its ecological role providing a unique habitat for other benthic organisms, the benthic fauna associated with the A. japonica coral carpet is poorly known. To identify fauna associated with the coral carpet, we explored three sites dominated by A. japonica and one control site on northwestern Jeju Island in May 2013. Using SCUBA, we collected A. japonica and the epibenthic mega-fauna associated with the colonies in 1×1 m2 and identified them to the species level. At a depth of 10 to 15 m, A. japonica colonies heavily covered the seafloor, forming a layer called a coral carpet, with a density of 94 (Keumneung-ri), 133 (Biyangdo), and 155 (Gwidok-ri) colonies/m2. Thirty-four molluscan species were identified from the four sites, including 20 bivalves and 14 gastropods. The coral carpets were enriched with sessile bivalves compared to the control site, as we identified twenty bivalve and eight gastropod species from the coral carpets. Most bivalve species associated with the coral carpets had tropical-subtropical affinities, while gastropods were mainly subtropical and subtropical-low boreal species. Leiosolenus lischkei M. Huber, 2010, in the family Mytilidae and Barbatia steamsi (Pilsbry, 1895), in the family Arcidae, were the two most abundant bivalve species in the coral carpet, L. lischkei being a borer, and B. stearnsi a nestler. The tropical to subtropical Pacific star shell Astralium haematragum (Menke, 1829)was the most abundant gastropod at the study sites. The bivalves and gastropods associated with the coral carpet were small-sized juveniles or sub-adults, suggesting that the coral carpet provides a micro-habitat for the bivalves and gastropods.

Preparation of Porous Nanostructures Controlled by Electrospray

  • Nguyen, Dung The;Nah, In Wook;Kim, Kyo-Seon
    • Korean Chemical Engineering Research
    • /
    • v.53 no.5
    • /
    • pp.627-631
    • /
    • 2015
  • Various solid structures were prepared by electrospray technique. In this process, liquid flows out from a capillary nozzle under a high electrical potential and is subjected to an electric field, which causes elongation of the meniscus to form a jet. In our study, by controlling the amount of polyvinyl pyrrolydone in precursor solution, the jet either disrupted into droplets for the formation of spherical particles or was stretched in the electric field for the formation of fibers. During the electrospray process, the ethanol solvent was evaporated and induced the solidification of precursors, forming solid particles. The evaporation of ethanol solvent also enhanced the mass transport of solutes from the inner core to the solid shell, which facilitated fabrication of porous and hollow structure. The network structures were also prepared by heating the collector.

Sensitivity Analysis of the Explicit Elasto-plastic Finite Element Method and Application to the Quasi-static Deformation (외연적 탄소성 유한요소해석에서의 민감도 해석과 준정적 변형에의 응용)

  • Kim, Se-Ho;Huh, Hoon
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.402-407
    • /
    • 2001
  • Sensitivity analysis scheme is developed in the elasto-plastic finite element method with explicit time integration using direct differentiation method. The direct differentiation is concerned with the time integration, constitutive relation, shell element with reduced integration and the contact scheme. Sensitivity analysis results are mainly examined with the highly nonlinear and quasi-static problem with the complicated contact condition. The result shows stable sensitivity especially in the sheet metal forming analysis.

  • PDF

Multi-stage Analysis of Elliptic Cup Drawing Processes with the Large Aspect Ratio by an Explicit Elasto-Plastic Finite Element Method (외연적 유한요소법을 이용한 세장비가 큰 타원형 컵 성형공정의 다단계 해석)

  • Kim, S.H.;Kim, S.H.;Huh, H.
    • Transactions of Materials Processing
    • /
    • v.9 no.3
    • /
    • pp.313-319
    • /
    • 2000
  • Finite element analysis is carried out for simulation of the multi-stage elliptic cup drawing process with the large aspect ratio. The analysis incorporates with shell elements for an elasto-plastic finite element method with the explicit time integration scheme. For the simulation, LS-DYNA3D is utilized for its wide capability of solving forming problems. The simulation result shows that the non-uniform drawing ratio at the elliptic cross section ad the small shoulder radius cause failure such as tearing and wrinkling. The result suggests the guideline to modify the tool shape for prevention of the failure during the drawing process.

  • PDF