• 제목/요약/키워드: Shell forming

검색결과 135건 처리시간 0.023초

강철재 약협의 공정해석 및 성형공정 개선에 관한 연구 (A Study on the Analysis and Improvement of Forming Processes of a Steel Shell Body)

  • 장동환;유태곤;황병복
    • 소성∙가공
    • /
    • 제10권3호
    • /
    • pp.246-246
    • /
    • 2001
  • The conventional and new forming processes of a steel shell body are analyzed by the rigid-plastic finite element method. The conventional process contains five forming stages such as bending, drawing, ironing, heading and sizing, which was designed by a forming equipment expert. The results of simulation of the conventional forming process are summarized in terms of deformation patterns and load-stroke relationships for each forming operation. Based on the simulation results of the current five-stage, the shell body forming Process including backward extrusion is designed for improving the conventional process sequence. Forming loads of the proposed process are within the limit value, which is proposed by experts and the proposed process is found to be proper for manufacturing steel shell body.

강철재 약협의 공정해석 및 성형공정 개선에 관한 연구 (A Study on the Analysis and Improvement of Forming Processes of a Steel Shell Body)

  • 장동환;유태곤;황병복
    • 소성∙가공
    • /
    • 제10권3호
    • /
    • pp.245-252
    • /
    • 2001
  • The conventional and new forming processes of a steel shell body are analyzed by the rigid-plastic finite element method. The conventional process contains five forming stages such as bending, drawing, ironing, heading and sizing, which was designed by a forming equipment expert. The results of simulation of the conventional forming process are summarized in terms of deformation patterns and load-stroke relationships for each forming operation. Based on the simulation results of the current five-stage, the shell body forming Process including backward extrusion is designed for improving the conventional process sequence. Forming loads of the proposed process are within the limit value, which is proposed by experts and the proposed process is found to be proper for manufacturing steel shell body.

  • PDF

쉘 요소를 이용한 박판성형공정의 유한요소해석 (Finite Element Analysis of Sheet Metal Forming Process Using Shell Element)

  • 정동원;고형훈;이찬호;유호영
    • 한국정밀공학회지
    • /
    • 제23권1호
    • /
    • pp.152-158
    • /
    • 2006
  • The AutoForm previously used the membrane element and it accomplished sheet metal forming analysis. The membrane analysis has been widely applied to various sheet metal forming processes because of its time effectiveness. However, it is well-known that the membrane analysis can not provide correct information for the processes which have considerable bending effects. In this research experimental results were compared with the analysis results obtained by using the shell element which is applied newly in the AutoForm commercial software. The shell element is a compromise element between continuum element and membrane element. The Finite element method by using shell element is the most efficient numerical method. From this research, it is known that FEA by using shell element can predict accurately the problems happened in actual experimental auto-body panel.

연소기 노즐확장부 외피구조물 성형치구 설계 (Forming Tool Design of Outer Shell Structure of Nozzle Extension for Thrust Chamber)

  • 유철성;이금오;최환석
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2010년도 제35회 추계학술대회논문집
    • /
    • pp.271-275
    • /
    • 2010
  • 연소기 재생냉각 챔버 노즐확장부의 외피구조물 제작을 위한 성형치구 설계에 대한 연구를 수행하였다. 연소기 챔버에서 두께가 얇은 외피구조물은 판재의 성형을 이용하여 제작한다. 노즐확장부 외피구조물의 성형에서 노즐확장부와 동일한 형상의 치구로 성형하면 성형 후 구조물의 형상이 노즐확장부와 일치하지 않고 탄성복원에 의하여 그 형상이 변화한다. 따라서 노즐확장부 형상과 동일한 형상으로 성형을 완성하기 위해서는 탄성복원을 고려한 성형치구의 설계가 필요하다. 본 연구에서는 초기 성형 후 탄성복원에 의한 노즐형상과 실제 구조물의 형상과의 오차를 없애기 위하여 오차를 보상한 새로운 성형치구용 형상을 생성하였다. 구조해석 결과 설계 수정된 성형치구로 성형하면 노즐 형상과 성형된 구조물과의 형상 오차가 매우 작게 감소함을 확인할 수 있었다.

  • PDF

맨드릴을 사용한 전자기 축관성형의 해석 (Analysis of Tube Compression with a Mandrel by Electromagnetic Forming)

  • 정상철;최길봉;신효철
    • 대한기계학회논문집
    • /
    • 제17권2호
    • /
    • pp.371-379
    • /
    • 1993
  • The wrinkling in the electromagnetic tube compression with a mandrel is remarkably smaller than that of the process without it. To analyze this phenomenon, the critical forming parameters such as the ratio of the clearance to the shell radius, the ratio of the thickness to the shell radius, and the ratio of the applied pressure to the standard pressure are introduced tp consider the effect of the mandrel, in addition to those of the thickness of shell and applied loads. The amplification ratio is also used to observe the magnitude of amplification. The results obtained by 2-D finite element method show that the initial imperfection embedded in the radius of cylindrical shell is the dominant factor to determine the final shape of the tube compression, and that the amplification ratio tends to have smaller values with the smaller clearance ratio and also with the larger thickness and pressure ratios.

하이브리드 박막/쉘 방법을 이용한 박판성형공정의 스프링백 해석 (Spring-Back Prediction for Sheet Metal Forming Process Using Hybrid Membrane/shell Method)

  • 윤정환;정관수;양동열
    • 소성∙가공
    • /
    • 제12권1호
    • /
    • pp.49-59
    • /
    • 2003
  • To reduce the cost of finite element analyses for sheet forming, a 3D hybrid membrane/shell method has been developed to study the springback of anisotropic sheet metals. In the hybrid method, the bending strains and stresses were analytically calculated as post-processing, using incremental shapes of the sheet obtained previously from the membrane finite element analysis. To calculate springback, a shell finite element model was used to unload the final shape of the sheet obtained from the membrane code and the stresses and strains that were calculated analytically. For verification, the hybrid method was applied to predict the springback of a 2036-T4 aluminum square blank formed into a cylindrical cup. The springback predictions obtained with the hybrid method was in good agreement with results obtained using a full shell model to simulate both loading and unloading and the experimentally measured data. The CPU time saving with the hybrid method, over the full shell model, was 75% for the punch stretching problem.

쉘 요소를 이용한 박판성형공정의 불량 예측 평가 (Prediction evaluation of problems happened of Sheet Metal Forming Process Using Shell Element)

  • 고형훈;이찬호;강동규;설남기;이광식;정동원
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.481-484
    • /
    • 2005
  • The AutoForm previously used the membrane element and it accomplished sheet metal forming analysis. The membrane analysis has been widely applied to various sheet metal forming processes because of its time effectiveness. However, it's well known that the membrane analysis can not provide correct information for the processes which have considerable bending effects. In this research it tried to compare the analysis results which use the shell element which is applied newly in the AutoForm commercial software with actual experimental results. The shell element is compromise element between continuum element and membrane element. The Finite element method by using shell element is the most efficient numerical method. From this research, it is known that FEA by using shell element can predict accurately the problems happened in actual experimental auto-body panel.

  • PDF

하이브리드 박막/쉘 방법을 이용한 박판성형공정의 스프링백 해석 (Spring-back prediction for sheet metal forming process using hybrid membrane/shell method)

  • F. Pourboghrat
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 춘계학술대회논문집
    • /
    • pp.62-65
    • /
    • 1999
  • To reduce the cost of finite element analyses for sheet forming a 3D hybrid membrance/sheel method has been developed to study the springback of anisotropic sheet metals. in the hybrid method the bending strains and stresses were analytically calculated as post-processing using incremental shapes of the sheet obtained previously from the membrane finite element analysis. To calculate springback a shell finite element model was used to unload the final shape of the sheet obtained from the membran code and the stresses and strains that were calculated analytically. For verification the hybrid method was applied to predict the springback of a 2036-T4 aluminum square blank formed into a cylindrical cup. the springback predictions obtained with the hybrid method was in good agreement with results obtained using a full shell model to simulateboth loading an unloading and the experimentally measured data. The CPU time saving with the hybrid method over the full shell model was 75% for the punch stretching problem.

  • PDF

연소기 노즐확장부 외피구조물의 성형 특성 (Forming Characteristics of Outer Shell Structure for Thrust Chamber Nozzle Extension)

  • 유철성;이금오;김종규;한영민;최환석
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2010년도 제34회 춘계학술대회논문집
    • /
    • pp.428-432
    • /
    • 2010
  • 연소기 챔버 노즐확장부 외피구조물의 성형특성에 대한 연구를 수행하였다. 노즐확장부 외피구조물의 제작에 사용되는 냉간압연 판재가 갖는 이방성 특성을 확인하기 위하여 세 가지 방향의 시편을 제작하여 인장시험을 수행하였으며, 그 결과를 이용하여 Lankford 값을 얻어 구조해석에 적용하였다. 실물형 연소기에 사용될 노즐확장부 외피구조물의 제작 및 성형공정을 통하여 외피구조물의 성형특성을 확인하였으며, 성형으로 얻은 변형률들을 구조해석 결과들과 비교하였다. 본 연구에서 얻은 결과들은 확대비가 더 큰 노즐확장부 제작을 위한 치구 및 성형공정의 설계에 활용될 예정이다.

  • PDF