• 제목/요약/키워드: Shell Geometry

검색결과 150건 처리시간 0.028초

EJMA에 기초한 벨로우즈 설계 소프트웨어의 개발 (Development of a Bellows Design Software Based on EJMA)

  • 고병갑
    • 한국공작기계학회논문집
    • /
    • 제17권1호
    • /
    • pp.150-157
    • /
    • 2008
  • Bellows are commonly used in piping systems to absorb expansion and contraction in order to reduce stress. Unlike most piping components, bellows consist of a thin-walled shell of revolution with a corrugated meridian, in order to provide the flexibility needed to absorb mechanical movements. It is a composite shell structure consisting of at least one toroidal shell, an annular plate or conical shell. It is difficult to analyze the behavior of bellows because of its complex geometry. Simplified formulas for variable mechanical behaviors of bellows are provided by a standard called EJMA. An automatic design software for bellows is programming by using VBA(Visual Basic for Application) based on EJMA. Bellows engineers can effectively make a decision for bellows geometries because this software provides graphically design results in its post-processor. Bellows design software is expected to give quite a good guidance to practical design. The characteristics of bellows are also investigated through the automatic design process in bellows design software.

Dynamic instability analysis of laminated composite stiffened shell panels subjected to in-plane harmonic edge loading

  • Patel, S.N.;Datta, P.K.;Sheikh, A.H.
    • Structural Engineering and Mechanics
    • /
    • 제22권4호
    • /
    • pp.483-510
    • /
    • 2006
  • The dynamic instability characteristics of laminated composite stiffened shell panels subjected to in-plane harmonic edge loading are investigated in this paper. The eight-noded isoparametric degenerated shell element and a compatible three-noded curved beam element are used to model the shell panels and the stiffeners respectively. As the usual formulation of degenerated beam element is found to overestimate the torsional rigidity, an attempt has been made to reformulate it in an efficient manner. Moreover the new formulation for the beam element requires five degrees of freedom per node as that of shell element. The method of Hill's infinite determinant is applied to analyze the dynamic instability regions. Numerical results are presented to demonstrate the effects of various parameters like shell geometry, lamination scheme, stiffening scheme, static and dynamic load factors and boundary conditions, on the dynamic instability behaviour of laminated composite stiffened panels subjected to in-plane harmonic loads along the boundaries. The results of free vibration and buckling of the laminated composite stiffened curved panels are also presented.

Ultimate bearing capacity of conical shell foundations

  • Colmenares, J.E.;Kang, So-Ra;Shin, Young-Jin;Shin, Jong-Ho
    • Structural Engineering and Mechanics
    • /
    • 제52권3호
    • /
    • pp.507-523
    • /
    • 2014
  • Shell foundations have been employed as an alternative for the conventional flat shallow foundations and have proven to provide economical advantage. They have shown considerably improved performance in terms of ultimate capacity and settlement characteristics. However, despite conical shell foundations are frequently used in industry, the theoretical solutions for bearing capacity of these footings are available for only triangular shell strip foundations. The benefits in design aspects can be achieved through theoretical solutions considering shell geometry. The engineering behavior of a conical shell foundation on mixed soils was investigated experimentally and theoretically in this study. The failure mechanism was obtained by conducting laboratory model tests. Based on that, the theoretical solution of bearing capacity was developed and validated with experimental results, in terms of the internal angle of the cone. In comparison to the circular flat foundation, the results show 15% increase of ultimate load and 51% decrease of settlement at an angle of intersection of $120^{\circ}$. Based on the results, the design chart of modified bearing capacity coefficients for conical shell foundation is proposed.

자유 곡면으로 구성되는 3차원 구조물에 대한 자동 요소 분할 (Automatic Mesh Generation for Three-Dimensional Structures Consisting of Free-Form Surfaces)

  • 이준성;;박면웅
    • 한국CDE학회논문집
    • /
    • 제1권1호
    • /
    • pp.65-75
    • /
    • 1996
  • This paper describes an automatic finite element(FE) mesh generation for three-dimensional structures consisting of free-form surfaces. This mesh generation process consists of three subprocesses: (a) definition of geometric model, i.e. analysis model, (b) generation of nodes, and (c) generation of elements. One of commercial solid modelers is employed for three-dimensional solid and shell structures. Node is generated if its distance from existing node points is similar to the node spacing function at the point. The node spacing function is well controlled by the fuzzy knowledge processing. The Delaunay method is introduced as a basic tool for element generation. Automatic generation of FE meshes for three-dimensional solid and shell structures holds great benefits for analyses. Practical performances of the present system are demonstrated through several mesh generations for three-dimensional complex geometry.

  • PDF

Buckling analysis of laminated composite cylindrical shell subjected to lateral displacement-dependent pressure using semi-analytical finite strip method

  • Khayat, Majid;Poorveis, Davood;Moradi, Shapour
    • Steel and Composite Structures
    • /
    • 제22권2호
    • /
    • pp.301-321
    • /
    • 2016
  • The objective of this paper is to investigate buckling behavior of composite laminated cylinders by using semi-analytical finite strip method. The shell is subjected to deformation-dependent loads which remain normal to the shell middle surface throughout the deformation process. The load stiffness matrix, which is responsible for variation of load direction, is also throughout the deformation process. The shell is divided into several closed strips with alignment of their nodal lines in the circumferential direction. The governing equations are derived based on the first-order shear deformation theory with Sanders-type of kinematic nonlinearity. Displacements and rotations of the shell middle surface are approximated by combining polynomial functions in the meridional direction and truncated Fourier series along with an appropriate number of harmonic terms in the circumferential direction. The load stiffness matrix, which is responsible for variation of load direction, is also derived for each strip and after assembling, global load stiffness matrix of the shell is formed. The numerical illustrations concern the pressure stiffness effect on buckling pressure under various conditions. The results indicate that considering pressure stiffness causes buckling pressure reduction which in turn depends on various parameters such as geometry and lay-ups of the shell.

열, 기계 하중을 고려한 지그재그 고차 복합재 쉘 이론 (Higher Order Zig-Zag Theory for Composite Shell under Thermo-mechanical load)

  • 오진호;조맹효
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.217-224
    • /
    • 2005
  • A higher order zig-zag shell theory is developed to refine the predictions of the mechanical and thermal behaviors partially coupled. The in-plane displacement fields are constructed by superimposing linear zig-zag field to the smooth globally cubic varying field through the thickness. Smooth parabolic distribution through the thickness is assumed in the out-of-plane displacement in order to consider transverse normal deformation and stress. The layer-dependent degrees of freedom of displacement fields are expressed in terms of reference primary degrees of freedom by applying interface continuity conditions as well as bounding surface conditions of transverse shear stresses. Thus the proposed theory has only seven primary unknowns and they do not depend upon the number of layers. In the description of geometry and deformation of shell surface, all rigorous exact expressions are used. Through the numerical examples of partially coupled analysis, the accuracy and efficiency of the present theory are demonstrated. The present theory is suitable in the predictions of deformation and stresses of thick composite shell under mechanical and thermal loads combined.

  • PDF

Truncated hierarchical B-splines in isogeometric analysis of thin shell structures

  • Atri, H.R.;Shojaee, S.
    • Steel and Composite Structures
    • /
    • 제26권2호
    • /
    • pp.171-182
    • /
    • 2018
  • This paper presents an isogeometric discretization of Kirchhoff-Love thin shells using truncated hierarchical B-splines (THB-splines). It is demonstrated that the underlying basis functions are ideally appropriate for adaptive refinement of the so-called thin shell structures in the framework of isogeometric analysis. The proposed approach provides sufficient flexibility for refining basis functions independent of their order. The main advantage of local THB-spline evaluation is that it provides higher degree analysis on tight meshes of arbitrary geometry which makes it well suited for discretizing the Kirchhoff-Love shell formulation. Numerical results show the versatility and high accuracy of the present method. This study is a part of the efforts by the authors to bridge the gap between CAD and CAE.

단면 수정계수를 이용한 이동 하중에 따른 트러스 연결부의 응력해석 (Stress Analysis of Truss Connection subjected to Moving Load Using Section Properties Factor)

  • 이상호;배기훈
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.354-361
    • /
    • 2002
  • This paper propose section properties factor to generate stress history for fatigue analysis and safety inspection of steel bridge. A methodology is described for the computation of numerical stress histories in the steel truss bridge, caused by the vehicles using section properties factor. The global 3-D beam model of bridge is combined with the local shell model of selected details. Joint geometry is introduced by the local shell model. The global beam model takes the effects of joint rigidity and interaction of structural elements into account. Connection nodes in the global beam model correspond to the end cross-section centroids of the local shell model. Their displacements are interpreted as imposed deformations on the local shell model. The load cases fur the global model simulate the vertical unit force along the stringers. The load cases fer the local model are imposed unit deformations. Combining these, and applying vehicle loads, numerical stress histories are obtained. The method is illustrated by test load results of an existing bridge.

  • PDF

단순지지된 Steel 및 복합재료 원통셸의 진동에 대한 실험적 고찰 (An Experimental Study on the Free Vibration of the Steel and Composite Cylindrical Shells with Simply Supported Edge Conditions)

  • 이영신;최명환;길기남;송근영
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1998년도 춘계학술대회논문집; 용평리조트 타워콘도, 21-22 May 1998
    • /
    • pp.334-339
    • /
    • 1998
  • The free vibration analysis of the simply supported steel and composite cylindrical shells are investigated. The natural frequencies and mode shapes of the shell are experimentally obtained by impact testing using an impact hammer and an accelerometer. The effects of the material and geometry on the vibrational characteristics of the shell are examined. The experimental results are compared with the analytical and a finite element results. They showed good agreement with each other.

  • PDF