• Title/Summary/Keyword: Sheffer polynomial

Search Result 2, Processing Time 0.018 seconds

SOME IDENTITIES ASSOCIATED WITH 2-VARIABLE TRUNCATED EXPONENTIAL BASED SHEFFER POLYNOMIAL SEQUENCES

  • Choi, Junesang;Jabee, Saima;Shadab, Mohd
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.2
    • /
    • pp.533-546
    • /
    • 2020
  • Since Sheffer introduced the so-called Sheffer polynomials in 1939, the polynomials have been extensively investigated, applied and classified. In this paper, by using matrix algebra, specifically, some properties of Pascal and Wronskian matrices, we aim to present certain interesting identities involving the 2-variable truncated exponential based Sheffer polynomial sequences. Also, we use the main results to give some interesting identities involving so-called 2-variable truncated exponential based Miller-Lee type polynomials. Further, we remark that a number of different identities involving the above polynomial sequences can be derived by applying the method here to other combined generating functions.

CHARACTERIZATIONS OF SOME POLYNOMIAL VARIANCE FUNCTIONS BY d-PSEUDO-ORTHOGONALITY

  • KOKONENDJI CELESTIN C.
    • Journal of applied mathematics & informatics
    • /
    • v.19 no.1_2
    • /
    • pp.427-438
    • /
    • 2005
  • From a notion of d-pseudo-orthogonality for a sequence of poly-nomials ($d\;\in\;{2,3,\cdots}$), this paper introduces three different characterizations of natural exponential families (NEF's) with polynomial variance functions of exact degree 2d-1. These results provide extended versions of the Meixner (1934), Shanbhag (1972, 1979) and Feinsilver (1986) characterization results of quadratic NEF's based on classical orthogonal polynomials. Some news sets of polynomials with (2d-1)-term recurrence relation are then pointed out and we completely illustrate the cases associated to the families of positive stable distributions.