• Title/Summary/Keyword: Sheet Forming Analysis

Search Result 491, Processing Time 0.084 seconds

박판성형공정의 유한요소해석을 위한 드로우비드 전문모델 개발(1부: 실험) (Development of Drawbead Expert Models for Finite Element Analysis of Sheet Metal Forming Processes (Part1:Experiment))

  • 이재우;금영탁
    • 소성∙가공
    • /
    • 제7권1호
    • /
    • pp.3-11
    • /
    • 1998
  • During the forming process of sheet metals, the drawbead in the die face controls a restraining force so that the sheet flows into the die cavity with tension. In order to investigate a drawgbead restraining force and a pre-strain just after drawbeads which are essential in the finite element analysis of form-ing processes, the friction test and drawing test are employed. The experiments performed with a cir-cular bead stepped bead double circular bead and circular-and-stepped bead in the various forming conditions and bead sizes show that the restraining force varies linearly with the blank holding force. bead radius blank thickness and friction but the pre-strain nonlinearly does with them.

  • PDF

강소성 외연적 유한요소법을 이용한 자동차 박판제품의 성형공정에 대한 단면해석 (Sectional Forming Analysis of Automobile Sheet Metal Parts by using Rigid-Plastic Explicit Finite Element Method)

  • 안동규;정동원;양동열;이장희
    • 한국자동차공학회논문집
    • /
    • 제3권3호
    • /
    • pp.19-28
    • /
    • 1995
  • The explicit scheme for finite element analysis of sheet metal forming problems has been widely used for providing practical solutions since it improves the convergency problem, memory size and computational time especially for the case of complicated geometry and large element number. The explicit schemes in general use are based on the elastic-plastic modelling of material requiring large computation time. In the present work, rigid-plastic explicit finite element method is introduced for analysis of sheet metal forming processes in which plane strain normal anisotropy condition can be assumed by dividing the whole piece into sections. The explicit scheme is in good agreement with the implicit scheme for numerical analysis and experimental results of auto-body panels. The proposed rigid-plastic explicit finite element method can be used as robust and efficient computational method for prediction of defects and forming severity.

  • PDF

리어 힌지 패널 스템핑의 유한요소해석 (Finite Element Analysis of Auto-body Panel Stamping)

  • 정동원;이장희;양동열
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1996년도 자동차부품 제작기술의 진보
    • /
    • pp.97-109
    • /
    • 1996
  • In the present work computations are carried out for analysis of complicated sheet metal forming process such as forming of a rear hinge. Finite element formulation using dynamic explicit time integration scheme and step-wise combined Implicit/Explicit scheme are introduced for numerical analysis of sheet metal forming process. The rigid-plastic finite element method based on membrane elements has long been employed as a useful numerical technique for the analysis of sheet metal forming because of its time effectiveness. The explicit scheme in general use is based on the elastic-plastic modelling of material requiring large computation time. In finite element simulation of sheet metal forming processes, the robustness and stability of computation are important requirements since the computation time and convergency become major points of consideration besides the solution accuracy due to the complexity of geometry and boundary conditions. The implicit scheme employs a more reliable and rigorous scheme in considering the equilibrium at each step of deformation, while in the explicit scheme the problem of convergency is eliminated at the cost of solution accuracy. The explicit approach and the implicit approach have merits and demerits, respectively. In order to combine the merits of these two methods a step-wise combined implicit/explicit scheme has been developed.

드로우비드 형상에 따른 박판 성형공정에 미치는 영향에 관한 연구 (The Effect of the Drawbead Shape on the Sheet Metal Forming Process)

  • 정동원;이상제
    • 대한기계학회논문집A
    • /
    • 제24권6호
    • /
    • pp.1624-1632
    • /
    • 2000
  • In the sheet metal forming process, the drawbead is used to control the flow of material during the forming process. The drawbead provides proper restraining force to the material and prevents defe cts such as wrinkling or breakage. For these reasons, many studies for designing the effective drawbead have been conducted. In this paper, the effect of the drawbead shape will be introduced. For the analysis, the numerical method called the static-explicit finite element method was used. The finite element analysis code for this method has been developed and applied to the drawbead process problems. In result, convergence problem and computation time due to large non-linearity in the existing numerical analysis methods were no longer a critical problem. Futhermore, this approach could treat the contact friction problem easily by applying very small time intervals. It is expected that various results from the numerical analysis will give very useful information for the design of tools in sheet metal forming process.

등방성 강판의 자동차용 Roof Panel 부품 적용 특성 해석 (FE Analysis for Application of Isotropic Steel Sheet on Auto-Roof Panel)

  • 한수식
    • 소성∙가공
    • /
    • 제15권3호
    • /
    • pp.241-246
    • /
    • 2006
  • The isotropic steel sheet was developed and started to apply on the auto-body outer panel, however the characteristics of application on auto-body were not well known. In this paper the FE analysis of outer panel of auto-body was carried out to investigate the characteristics of isotropic steel sheet. For the FE analysis of the roof panel of ULSAB body the isotropic steel sheet and the bake hardening steel sheet were used. The Isotropic steel sheet shows more deformation at punch bottom area of roof panel than the bake hardening steel sheet that is most required forming properties far outer panel to obtain the shape likability of forming parts. It is shown that the isotropic steel sheet has suitable material properties far outer panels of auto-body.

순차적 전자기-구조 연성해석을 통한 전자기성형 공정 해석 (Analysis of Electromagnetic Forming Using Sequential Electromagnetic-Mechanical Coupled Simulations)

  • 김정;노학곤;고세진;김태정
    • 소성∙가공
    • /
    • 제21권7호
    • /
    • pp.441-446
    • /
    • 2012
  • A sequential coupled field analysis of electromagnetic free bulging was performed by using FEM. A 2D axi-symmetric electromagnetic model based on the magnetic vector potential is proposed for the calculation of magnetic field and Lorentz's forces. The Newmark integration method is used to calculate the transient dynamic plastic deformation of sheet during free bulging. In the finite element model, the effect of sheet deformation on the electromagnetic field analysis is taken into consideration. In order to confirm the sequential electromagnetic-mechanical coupling analysis, an experiment with an electromagnetic forming apparatus was conducted. The results showed that the final bulge height of the sheet predicted from the proposed method is in good agreement with experimentally measured height.

판재 성형품의 탄성회복예측 정밀도 향상을 위한 실험 및 해석 (Experimental and FE Analysis to Improve the Accuracy of Springback Prediction on Sheet Metal Forming)

  • 이영선;김민철;권용남;이정환
    • 소성∙가공
    • /
    • 제13권6호
    • /
    • pp.490-496
    • /
    • 2004
  • Springback comes from the release of external loads after forming. The control of phenomenon is especially important in the sheet metal forming since there are no other practical methods available to correct the dimensional inaccuracy from springback. Therefore the accurate prediction before the die machining has been a long goal in the field of sheet metal forming. The am of the present study is to enhance the prediction capability of finite element (FE) analysis for the springback phenomenon. For this purpose FE analysis for V-bending has been carried out with the commercial programs, LS-DYNA. The FE analysis results have been validated through the comparison of experimental. The experimental results measured directly by the strain gauge have given the confidence to FEA.

회귀분석을 활용한 비정형롤판재성형 공정의 형상 예측 (Shape Prediction of Flexibly-reconfigurable Roll Forming Using Regression Analysis)

  • 박지우;윤준석;김정;강범수
    • 소성∙가공
    • /
    • 제25권3호
    • /
    • pp.182-188
    • /
    • 2016
  • Flexibly-reconfigurable roll forming (FRRF) is a novel sheet metal forming technology conducive to producing multi-curvature surfaces by controlling the strain distribution along longitudinal direction. In FRRF, a sheet metal is shaped into the desired curvature by using reconfigurable rollers and gaps between the rollers. As FRRF technology and equipment are under development, a simulation model corresponding to the physical FRRF would aid in investigating how the shape of a sheet varies with input parameters. To facilitate the investigation, the current study exploits regression analysis to construct a predictive model for the longitudinal curvature of the sheet. Variables considered as input parameters are sheet compression ratio, radius of curvature in the transverse direction, and initial blank width. Samples were generated by a three-level, three-factor full factorial design, and both convex and saddle curvatures are represented by a quadratic regression model with two-factor interactions. The fitted quadratic equations were verified numerically with R-squared values and root mean square errors.

유한요소법을 이용한 가변 스트레치 성형공정의 적합성 검증 (Usefulness Verification for Flexible Stretch Forming Process using finite Element Method)

  • 서영호;허성찬;박중원;송우진;구태완;김정;강범수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 추계학술대회 논문집
    • /
    • pp.241-244
    • /
    • 2009
  • This paper deals with a usefulness verification of stretch forming process using flexible die. The stretch forming method is widely used in aircraft and high-speed train industries for manufacturing of skin structure, which is made of sheet metal. A great number of solid dies are originally used and developed for specific shapes with respect to different curvature radii of the skin structures. Accordingly, flexible stretch forming process is proposed in this study. It replaces the conventional solid dies with a set of height adjustable discrete punches. A usefulness of the flexible die is verified through extensive numerical simulations of the stretch forming process for simply curved sheet plate. The elastic recovery is considered and formability evaluations are conducted through a comparison of symmetry plane configurations.

  • PDF

굴삭기 요소수 탱크 커버의 신규 모델 개발을 위한 CAE 기반 프레스 성형 공정 설계 (Stamping process design to develop a urea tank cover for excavators based on sheet metal forming analysis)

  • 전용준;허영무;윤석현;김동언
    • Design & Manufacturing
    • /
    • 제14권2호
    • /
    • pp.49-55
    • /
    • 2020
  • Recently, when a new component of construction equipment is designed, a stamping process capable of producing parts having high appearance quality and precision has been gaining attention. However, in general, as it is developed based on existing parts made by welding metal sheets and tubes, frequent to die modification occurs, which increases the time and cost of developing new parts. Thus, it is necessary to reduce the cost by shortening the die development period. In this study, a stamping process was designed for the urea tank cover, which is a part for excavators, to reduce the die development period through sheet metal forming analysis. The stamping process was designed by determining the blank holding force after selecting the initial blank shape and size. The round value at the corner was modified such that formability is ensured. After selecting process parameters, the thickness reduction rate and spring-back effect were reviewed.