• 제목/요약/키워드: Sheet Forming Analysis

검색결과 491건 처리시간 0.024초

유한요소해석을 이용한 박판 벤딩용 CO2 레이저 성형기 제작 (Production of CO2 Laser Forming Machine for Bending of Sheet Metal Using the FE-Analysis)

  • 고대철;이찬주;김병민
    • 소성∙가공
    • /
    • 제15권4호
    • /
    • pp.319-325
    • /
    • 2006
  • The laser forming process is a new flexible forming process without forming tools and external force, which is applied to various fields of industry. Especially, applications of the laser forming process focused on cutting, welding and marking process. In this paper, the laser bending process of sheet metal which is heated by laser beam and formed by internal stress is simulated by using thermo elastic-plastic analysis model. Based on the result of FE-analysis, the laser bending machine is made to obtain reliable data for sheet bending. Under the same condition as FE-analysis, the laser bending experiment has been performed to ver 펴 the result of FE-analysis and good agreement has been obtained between FE-analysis and experiments. Additional laser bending experiments have been performed to evaluate the laser bending machine.

박판성형기술의 개발과 적용 (The Development and Application of Sheet Metal Forming Technology)

  • 박춘달;이장희;양동열;허훈;정동원
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1994년도 박판성형기술의 진보
    • /
    • pp.147-162
    • /
    • 1994
  • Generally, the forming process of sheet metal is very complex and difficult process because of many variables such as tool geometry, material properties and lubrication. In this view point, the numerical analysis of sheet metal forming process is very difficult. High speed computer is used to model complex sheet metal forming process on a reasonable time scale. The design and development of sheet metal parts in the automotive industry and the need for improved sheet forming process and reduced part development cost have led to the use of computer simulation in tool/die design of sheet metal pressing. HMC(Hyundai Mator Company) has invested to develop programs for analysis of sheet metal forming process with connection of Universities. As a result, several programs were developed. Recently, the commercial software, PAM-STAMP of ESI was installed and is being tried to application of it to the real automotive panels. This article reviews the ongoing activities on development and application of analytical modeling of sheet metal forming at HMC.

탄소성 동적해석시 해에 미치는 여러 인자들의 비교연구 (A Comparative Study on Elastic-Plastic -Dynamci Analysis of Sheet Metal Forming)

  • 박종진
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 춘계학술대회논문집
    • /
    • pp.245-248
    • /
    • 1999
  • Explicit dynamic finite element analysis has been used widely in the field of sheet metal forming. However in using the analysis technique there are some parameters which are not clearly defined so that engineers may obtain inaccurate solutions In the present study parameters such as time step damping ratio penalty constant and punch speed were investigated on their influence to the solution behavior. Considered forming processes are plane stain bending by a punch and axisymmetric deep drawing.

  • PDF

가변금형의 박판 성형공정 적용 연구 (Study on Application of Flexible Die to Sheet Metal Forming Process)

  • 허성찬;서영호;구태완;김정;강범수
    • 소성∙가공
    • /
    • 제18권7호
    • /
    • pp.556-564
    • /
    • 2009
  • Flexible forming process for sheet material using reconfigurable die is introduced based on numerical simulation. In general, this flexible forming process using the reconfigurable die has been utilized for manufacturing of curved thick plates used for hull structures, architectural structures and so on. In this study, numerical simulation of sheet metal forming process is carried out by using flexible dies model instead of conventional matched die set. The numerical simulation and experimental verification for sheet metal forming process using a flexible forming machine that is more suitable for thick plate forming process are carried out to confirm the appropriateness of the simulation process. As an elastic cushion, urethane pads are utilized using hyperelastic material model in the simulation for smoothing the forming surface which is discrete due to characteristics of the flexile die. In the flexible forming process for sheet metal, effect of a blank holder is also investigated according to blank holding methods. Formability in view of occurrence of dimples is compared with regard to the various punch sizes. Consequently, it is confirmed that the flexible forming for sheet material using urethane pad has enough capability and feasibility for manufacturing of smoothly curved surface instead of conventional die forming method.

전자기력을 이용한 박판 성형공정의 해석적 연구 (Numerical Simulation of Thin Sheet Metal Forming Process using Electromagnetic Force)

  • 서영호;허성찬;구태완;송우진;강범수;김정
    • 소성∙가공
    • /
    • 제17권1호
    • /
    • pp.35-45
    • /
    • 2008
  • Electromagnetic Forming (EMF) technology such as magnetic pulse forming, which is one of the high velocity forming methods, has been used for the joining and forming process in various industry fields. This method could be derived a series of deformation of sheet metal by using a strong magnetic field. In this study, numerical approach by finite element simulation of the electromagnetic forming process was presented. A transient electromagnetic finite element code was used to obtain the numerical model of the time-varying currents that are discharged through the coil in order to obtain the transient magnetic forces. Also, the body forces generated in electromagnetic field were used as the loading condition to analyze deformation of thin sheet metal workpiece using explicit dynamic finite element code. In this study, after finite element analysis for thin sheet metal forming process with free surface configuration was performed, analytical approach for a dimpled shape by using EMF was carried out. Furthermore, the simulated results of the dimpled shape by EMF were compared with that by a conventional solid tool in view of the deformed shape. From the results of finite element analysis, it is confirmed that the EMF process could be applied to thin sheet metal forming.

직접미분 설계민감도 해석을 이용한 박판금속성형 공정변수 최적화 (II) -공정 변수 최적화- (Optimum Design of the Process Parameter in Sheet Metal Forming with Design Sensitivity Analysis using the Direct Differentiation Approach (II) -Optimum Process Design-)

  • 김세호;허훈
    • 대한기계학회논문집A
    • /
    • 제26권11호
    • /
    • pp.2262-2269
    • /
    • 2002
  • Process optimization is carried out to determine process parameters which satisfy the given design requirement and constraint conditions in sheet metal forming processes. Sensitivity -based-approach is utilized for the optimum searching of process parameters in sheet metal forming precesses. The scheme incorporates an elasto-plastic finite element method with shell elements . Sensitivities of state variables are calculated from the direct differentiation of the governing equation for the finite element analysis. The algorithm developed is applied to design of the variablc blank holding force in deep drawing processes. Results show that determination of process parameters is well performed to control the major strain for preventing fracture by tearing or to decrease the amount of springback for improving the shape accuracy. Results demonstrate that design of process parameters with the present approach is applicable to real sheet metal forming processes.

굽힘 첨가 박막요소에 의한 알루미늄 샌드위치 판재 성형공정의 단면 유한요소 해석 (Sectional Finite Element Analysis of Forming Process of Aluminum Sandwich Sheet by Bending Augmented Membrane Elements)

  • 이재경;금영탁;유용문;이명호
    • 소성∙가공
    • /
    • 제10권2호
    • /
    • pp.91-100
    • /
    • 2001
  • A sectional FEA program is developed lot analyzing forming processes of sandwich sheets, which are intensively used recently as a lightweight material of an automobile body. The aluminum sandwich sheet consists of two aluminum skins and a polyprophylen core in between. The aluminum sandwich sheet is dominantly effected by the bending effects in small radius of curvature, so that an appropriate description of bending effects is required to analyze the forming processes. For the evaluation of bending effects, the bending equivalent forces are calculated from the bending moment computed using the curvature of the tool and are added to the membrane stretch forces. To verify the validity of the developed program the sectional FEA results in stretch/draw forming Processes of a square cup and draw forming Processes of an outer hood panel were compared with the measurements.

  • PDF

SELECTED ADVANCES IN SHEET MATERIAL FORMING

  • Lee, Daeyong-
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1994년도 박판성형기술의 진보
    • /
    • pp.1-9
    • /
    • 1994
  • Three recent developments made at Rensselaer in sheet material forming processes are briefly reviewed in this paper. These advances represent three broad disciplines of Process Simulation, Forming Processes, and Computer-Aided Measurement Methods. The first development deals with simple and quick computer simulation of 2D sheet forming process without depending on popular finite element analysis methods. An analytical method based on a thin shell theory accounts for bending and unbending effects, and is capable of simulating practical sheet metal forming processes under the plane strain condition. The second area is concerned with innovative methods to improve formability of sheet materials by temperature gradient forming. The drawing limit is increased by such an improved temperature gradient forming process. The third and final area deals with a totally new experimental technique to capture 3D geometry data and measure strain distributions of sheet metal parts using a digital 35mm SLR camera.

Mg합금 온간판재 성형시 성형한계에 미치는 변형률 속도의 영향 (An Effect of Strain rate of Forming limits of Mg Alloy at Warm Sheet Forming)

  • 정진호;김민철;이영선;권용남;이정환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 춘계학술대회 논문집
    • /
    • pp.279-280
    • /
    • 2007
  • In this study, it is investigated that the effect of material properties such as various temperature, forming speed and strain rates on formability and forming limits of Mg alloy sheet in square cup deep drawing. Since the sheet metal forming of Mg alloy is perform at elevated temperature, the effect of strain rates related with the forming temperature and forming speed is very important factor for formability and forming limits. Therefore, the investigation for process variables is necessary to improve formability and forming limits. Also, the effects of strain rate and thickness transformation were studied by the experimental and FE analysis using the square cup deep drawing. The temperature, forming speed, and strain rates were investigated. Forming of Mg alloy takes consider into temperature, proper forming speed and strain-rate the formed parts were good without defects fur forming limits.

  • PDF

박판성형 해석용 마찰모델 (1부 : 실험) (Friction Model for Sheet Metal Forming Analysis (Part1 : Experiment))

  • 이봉현;금영탁
    • 소성∙가공
    • /
    • 제11권4호
    • /
    • pp.349-354
    • /
    • 2002
  • In order to find the effect of lubricant viscosity, sheet surface roughness, tool geometry, and forming speed on the frictional characteristics in sheet metal forming, a sheet metal friction tester was designed and manufactured and friction test of various sheet were performed. Friction test results showed that as the lubricant viscosity becomes lower, the friction coefficient is higher. When surface roughness is extremely low or high, the friction coefficient is relatively high. The result also show that as the punch radius and punch speed becomes bigger, the friction coefficient is smaller. Using experimental results, the mathematical expression between friction coefficient and lubricant viscosity, surface roughness, punch comer radius, or punch speed is also described.