• Title/Summary/Keyword: Sheet Forming Analysis

Search Result 491, Processing Time 0.022 seconds

Thin Steel Sheet Roll Forming and Load Analysis (박판강대의 롤성형 및 부하 분석)

  • 서정현
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.273-279
    • /
    • 1999
  • In this paper the stress and strain behaivor in near homogeneous isotropic matrix of metal like steel was studied roll forming of thin steel sheet for cylindrical pipe. Analytical results reveals a body which is on the area of square thickness along and perpendicular to the width of thin steel sheet is in the state of plane strain during roll forming. As a result construction of analytical method for calculating deformation load and stably deformed length along the width of strained steel sheet was established. Also loads applied during roll forming were analyzed using two typical thin steel sheet 12.3m thick steel sheet with 42.5kg /mm2 yield strength of pipe and 5.3mm thick steel sheet with 32.5kg/mm2 yield strength of pipe. Through this analysis applicability of the analytical method for deformation load during roll forming of cylindrical thin steel pipe was evaluated with a study of necessary production technology for roll forming and design technology for roll forming machine.

  • PDF

Thin Steel Sheet Roll Forming and Load Analysis (박판 강대의 롤성형 및 부하 분석)

  • 서정현
    • Transactions of Materials Processing
    • /
    • v.8 no.6
    • /
    • pp.554-562
    • /
    • 1999
  • In this paper, the stress and strain behavior in near homogeneous isotropic matrix of metal like steel was studied during roll forming of thin steel sheet for cylindrical pipe. Analytical result reveals a body which is on the area of square thickness along and perpendicular to the width of thin steel sheet is in the state of plane strain during roll forming. As a result, construction of analytical method for calculating deformation load and stably deformed length along the width of strained steel sheet was established. Also, loads applied during roll forming were analyzed using two typical thin steel sheets. 12.3mm thick steel sheet with 42.5kg/㎟ yield strength of pipe and 5.3mm thick steel sheet with 32.5kg/㎟ yield strength of pipe. Through this analysis, applicability of the analytical method for deformation load during roll forming of cylindrical thin steel pipe was evaluated with a study of necessary production technology for roll forming and design technology for roll forming machine.

  • PDF

A Study on Static-Implicit Forming Analysis of the Magnesium Alloy Sheet (마그네슘 합금 판재의 정적-내연적 성형해석에 관한 연구)

  • Son, Young-Ki;Jung, Dong-Won
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.4
    • /
    • pp.44-49
    • /
    • 2008
  • The characteristic of magnesium alloy is the most light in utility metal, the effect of electromagnetic wave interception, excellent specific strength and absorptiveness of vibration. Although magnesium alloy with above characteristic is a subject matter which is suitable in world-wide tendency of electrical component frame, sheet magnesium alloy is difficult to process. Therefore, forming analysis of sheet magnesium alloy and applying warm-working to process are indispensable. Among Finite element method, the static implicit finite element method is applied effectively to analyze sheet magnesium alloy stamping process, which include the forming stage. In this study, it was focused on the crack, wrinkling and spring back on sheet magnesium alloy stamping by the static implicit analysis. According to this study, the result of simulation will give engineers good information to access the forming technique on sheet magnesium alloy. And its application is being increased especially in the production of electrical component frame for the cost reduction, saving of defective ratio, and improvement of Productivity.

  • PDF

A Study on the 2-Layered Sheet Metal Forming Analysis and Applications in Automotive Exhaust Component (2-Layer 블랭크를 적용한 자동차 배기 부품의 박판 성형 해석 및 적용)

  • Roh G. T.;Jeong W. S.;Moon M. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.318-321
    • /
    • 2005
  • The shell part is made of 2-layered blank because of functional requirements. To investigate the draw formability in this kind of part, the 2-layered sheet metal forming analysis process should be stipulated. First of all, treatment of contact with each blank must be considered to prevent the penetration on the each blank. Subsequently, applying the draw bead force is considered carefully because application of drawbead force for analysis is different with equivalent drawbead force. Formability as like crack, neck and wrinkles is estimated by FLD(Forming Limit Diagram) and thinning. A feasibility of the 2-layered sheet metal forming analysis process study is verified compare 2-layered sheet metal forming analysis with experimental results.

  • PDF

Numerical and Experimental Analysis of Hydroforming Process of Sheet Metal Pairs (박판페어를 이용한 하이드로포밍 공정의 수치적 및 실험적 해석)

  • Kim T. J.;Yang D. Y.;Han S. S.;Nam J. B.;Jin Y. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.50-53
    • /
    • 2001
  • Hydroforming process has become an effective manufacturing process because it can be adaptable to forming of complex structural components. Tube hydroforming has been successfully developed in the real industrial field by many researchers. However, there still remains the constraint about shape which can be manufactured by tube hydroforming. In order to improve this constraint of shape and formability of conventional sheet metal forming, hydroforming process of sheet metal pairs becomes an important technology. In the present work, the finite element analysis of hydroforming process of sheet metal pairs is presented. After basic study about experimental parameters based on numerical analysis, hydroforming process of sheet metal pairs is developed which uses hydraulic pressure as a main forming source.

  • PDF

Study on the Calculation of Friction Coefficient for Sheet Metal Forming Analysis (박판 성형해석을 위한 마찰계수의 산정에 관한 연구)

  • Keum, Y.T.;Shim, J.W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.27-30
    • /
    • 2007
  • In order to measure the friction coefficient used in sheet metal forming analysis, a friction tester was manufactured and friction tests were performed in various forming conditions. Based on the friction coefficients measured, a mathematical friction model was constructed in terms of lubricant viscosity, blank holding force, punch velocity and sheet roughness. In addition, the effect of the number of forming parameters in the calculation of friction coefficient on the accuracy of sheet metal forming analysis was investigated by comparing the punch loads obtained from the FEM simulation, in which the friction coefficients were determined by a few parameters with the experimental measurement.

  • PDF

On the Springback Analysis of Sheet Metal Forming (판재성형의 탄성복원해석에 대하여)

  • 조진우;정완진
    • Transactions of Materials Processing
    • /
    • v.6 no.5
    • /
    • pp.386-394
    • /
    • 1997
  • The analysis of the springback is done based on the stress of sheet after forming. Therfore, it is important to get the accurate stress from forming analysis. In this study, some parameters that influence on the accuracy of the springback estimation are investigated. Discretization of sheet and tools, choice of penalty constant and damping in contact treatment, and tool speed scaling are chosen as parameters. As a numerical example, the 2D draw bending benchmark problem of the NUMISHEET'93 is used. Also, the springback results of the s-rail benchmark problem of the NUMISHEET'96 are presented.

  • PDF

A Basic Study on Incremental Forming Method for Sheet Metal (판재의 점진성형법에 대한 기초연구)

  • Shim M. S.;Park J. J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.10a
    • /
    • pp.128-131
    • /
    • 2000
  • The technology of incremental forming has drawn attention for small-batch production of sheet metal components. In the present investigation a forming tool containing a freely-rotating ball was developed and applied to forming experiments. Deformation characteristics including crack occurred during forming with this tool was examined for full annealed Al1050 sheet. The finite element analysis was successfully applied to this special type of forming process, and provided results that agree well with the measurements.

  • PDF

A Study on the Forming Process of High-strength Aluminum Sheet for Electric Vehicle Heat Exchanger Separator Through Parametric Analysis (인자 분석을 통한 전기차 열교환기 분리판용 고강도 알루미늄 판재 성형 연구)

  • Jung, S.H.;Yang, J.H.;Kim, Y.B.;Lee, K.J.;Kim, B.H.;Lee, J.S.;Bae, G.H.
    • Transactions of Materials Processing
    • /
    • v.31 no.2
    • /
    • pp.57-63
    • /
    • 2022
  • The current study performed formability analysis of a heat exchanger separator for an electric vehicle to apply a high-strength aluminum sheet based on parametric analysis. Mechanical properties for sheet metal forming simulation were evaluated by tensile test, bulge test, and Nakajima test. Two-stage crash forming was established by considering the mass production process using conventional low-strength aluminum sheets. In this study, FEM for the two-stage forming process was conducted to optimize the corner radius and height for improving the formability. In addition, the possibility of a one-stage forming process application was confirmed through FEM. The prototype of the sample was manufactured as FEM results to validate the parametric analysis. Finally, this result can provide a one-stage forming process design method using the high-strength aluminum sheet for weight reduction of a heat exchanger separator for an electric vehicle.

Forming Analysis of Automotive Fender Panel Considering Die Deformation (금형 변형을 고려한 자동차 펜더패널의 성형해석)

  • Song, M.S.;Keum, Y.T.
    • Transactions of Materials Processing
    • /
    • v.15 no.5 s.86
    • /
    • pp.387-394
    • /
    • 2006
  • In order to see the effect of die deformation on the forming analysis of sheet metals, the draw-ins, strains, and spring-backs of an automotive fender panels are numerically simulated by considering the die deformation found by the simultaneous structural analysis of press and dies. By coupling the forming analysis and the structural analysis, the die deformation is simultaneously taken into account in the forming process. Furthermore, for the consideration of load difference transferred among the upper die, punch, and blank holder due to the changes in sheet thickness, the gap elements are employed instead of the blank sheet in the structural analysis. The numerical simulation results of an automotive finder draw panel are compared with the measurements. The comparison of the forming and spring-back analysis results between the rigid die and the deformed die shows that the consideration of tool deformation can predict more accurately the forming and spring-back of sheet metals.