• 제목/요약/키워드: Shedding frequency

검색결과 269건 처리시간 0.022초

원자력 발전소 배관계 글로브 밸브의 고주파 진동 원인 분석 및 해결 사례 (A Case Study of Root Cause Analyses and Remedies for High frequency Vibration of Globe Valve in Nuclear Power Plant Piping System)

  • 최병화;박수일;전창빈
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.394-399
    • /
    • 2005
  • A case history is presented pertaining to high frequency piping vibration and noise caused by globe valve in the spent fuel pool cooling system of nuclear power plant. Frequency analyses were performed on the system to diagnose the problem and develop a solution to reduce the piping vibration and noise. The source of the high frequency and noise energy was traced to the globe valve located immediately downstream of the centrifugal pump by performing valve throttling test. Measurements of vibration and noise are presented to show that the high frequency vibration and noise amplitude was dependent upon the valve disc position and flow rate. Strouhal vortex shedding frequencies were generated at the exit of the globe valve which exited structural resonance of valve disc and amplified the high frequency vibration and noise. The problem was identified as an interaction between the flow inside globe valve and the valve disc structure. Attempts to reduce the vibration and noise amplitudes of the piping system were successfully achieved by the modification of guide-disc diameter and disc-edge figure The valve disc was replaced by an alternative to eliminate the source of the harmful high frequency vibration and noise.

  • PDF

Investigation of wind-induced dynamic and aeroelastic effects on variable message signs

  • Meyer, Debbie;Chowdhury, Arindam Gan;Irwin, Peter
    • Wind and Structures
    • /
    • 제20권6호
    • /
    • pp.793-810
    • /
    • 2015
  • Tests were conducted at the Florida International University (FIU) Wall of Wind (WOW) to investigate the susceptibility of Variable Message Signs (VMS) to wind induced vibrations due to vortex shedding and galloping instability. Large scale VMS models were tested in turbulence representative of the high frequency end of the spectrum in a simulated suburban atmospheric boundary layer. Data was measured for the $0^{\circ}$ and $45^{\circ}$ horizontal wind approach directions and vertical attack angles ranging from $-4.5^{\circ}$ to $+4.5^{\circ}$. Analysis of the power spectrum of the fluctuating lift indicated that vertical vortex oscillations could be significant for VMS with a large depth ratio attached to a structure with a low natural frequency. Analysis of the galloping test data indicated that VMS with large depth ratios, greater than about 0.5, and low natural frequency could also be subject to galloping instability.

날개 명음소음에 관한 이론 및 실험 연구 (Theoretical and Experimental Study on Airfoil Singing)

  • 안병권;김종현;최종수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.476-476
    • /
    • 2009
  • Periodic vortex separations generate periodic vertical forces acting on a trailing edge of an airfoil. When a natural frequency of the trailing edge of the airfoil is close to a vortex shedding frequency, an amplitude of the edge oscillation becomes maximal; it makes intensive noise called singing. Motion of the trailing edge may also feedback to the vortex shedding so that self-sustained oscillation appear, and a resonant frequency is locked in some interval of the speed of the incident flow. In this study, a theoretical model is proposed and applied for modeling an airfoil singing. Results are compared with experimental measurements which are carried out in an anechoic wind tunnel.

  • PDF

날개 명음소음에 관한 이론 및 실험 연구 (Theoretical and Experimental Study on Airfoil Singing)

  • 안병권;이종현;이욱;최종수
    • 한국소음진동공학회논문집
    • /
    • 제20권2호
    • /
    • pp.115-121
    • /
    • 2010
  • Periodic vortex separations generate periodic vertical forces acting on a trailing edge of an airfoil. When a natural frequency of the trailing edge of the airfoil is close to a vortex shedding frequency, an amplitude of the edge oscillation becomes maximal; it makes intensive noise called singing. Motion of the trailing edge may also feedback to the vortex shedding so that self-sustained oscillation appears, and a resonant frequency is locked in some interval of the speed of the incident flow. In this study, a theoretical model is proposed and applied for modeling an airfoil singing. Results are compared with experimental measurements which are carried out in an anechoic wind tunnel.

Mixing Characteristics of Kerosene-Lox in a Swirl Injector at 100 bar

  • Heo, Junyoung;Kang, Jeongseok;Sung, Hong-Gye
    • International Journal of Aerospace System Engineering
    • /
    • 제3권1호
    • /
    • pp.30-38
    • /
    • 2016
  • The The turbulent mixing characteristics of Kerosene-LOx in a coaxial swirl injector 100 bar have been numerically investigated. Turbulent model is based on large eddy simulation with real-fluid transport and thermodynamics. The effects of equation of state (EOS), chamber pressure are evaluated in a point of the mixing efficiency and pressure fluctuations. The dominant frequency is same as the hairpin vortex shedding frequency generated by film wave at the LOx post.

수중 프로펠러 명음 현상의 규명에 관한 연구 (A study on the identification of underwater propeller singing phenomenon)

  • 김태형;이형석
    • 한국음향학회지
    • /
    • 제37권2호
    • /
    • pp.92-98
    • /
    • 2018
  • 본 논문은 모형 프로펠러를 대상으로 공동수조 시험, 수중 충격시험, 유한요소해석 및 전산유체해석에 기반하여 수행한 명음 발생 메커니즘 연구이다. 선미 유동을 모사하기 위해 반류망, 프로펠러 및 방향타를 설치하고 수중청음기와 가속도계로 프로펠러 명음 현상의 발생과 소멸을 계측하였다. 유한요소해석을 통해 프로펠러 날개의 고유진동수를 예측하고 접촉 및 비접촉식 충격시험으로 이를 검증하였다. RANS(Reynolds Averaged Navier-Stokes) 방정식 기반 전산유체해석을 통하여 프로펠러 날개 각 단면의 유속과 유효 받음각을 계산하였으며, DES(Detached Eddy Simulation) 기반 고해상도 해석을 통해 명음 발생 위치에서 2-D 날개 단면 뒷전의 와류흘림주파수(vortex shedding frequency) 계산을 수행하였다. 수치적으로 예측된 와류흘림주파수는 모형시험으로 계측한 명음 발생 주파수 및 날개 고유진동수와 일치함을 확인하였다.

강합성 단면을 가진 사장교의 와류진동 발생 예측 (Prediction of Vortex-induced Vibration of the Cable-Stayed Bridge with Steel Composite Deck)

  • 조재영;조영래;이학은
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2007년도 정기총회 및 학술발표대회
    • /
    • pp.449-453
    • /
    • 2007
  • After over a century of effort by researchers and engineers, the problem of bluff body flow, in particular vortex shedding frequency, remains almost entirely in the empirical, descriptive realm of knowledge. Computational methods have been systematically applied for vortex-induced vibrations of the cable-stayed bridge with steel composite deck by unsteady wind loadings due to vortex-shedding. The focus of this paper is to predict the vortex-induced vibration of the cable-stayed bridge with steel composite deck based computational fluid dynamics(CFD).

  • PDF

운전예비력의 최적운용방식에 관한 연구 (A study on the optimum operation scheme with operating reserve power)

  • 송길영
    • 전기의세계
    • /
    • 제28권5호
    • /
    • pp.49-55
    • /
    • 1979
  • During severe emergencies which result in insufficient generation to meet load, an automatic load shedding method considering the spinning and operating reserve can establish the optimum system operation. This paper presents methods and results of a study on the optimum operating scheme with spinning and operating reserve power in case of outage of large generator units to prevent frequency decay and continue stable operation. This study covers following three parts 1) Analysis of spinning reserve characteristics 2) Determination of operating reserve requirements 3) Development of the optimum load shedding programs By this study the optimum system operating method was recommended for reliable operation of power system.

  • PDF

플라즈마 합성제트를 이용한 사각 실린더 유동의 제어 (CONTROL OF SQUARE CYLINDER FLOW USING PLASMA SYNTHETIC JETS)

  • 김동주;김경진
    • 한국전산유체공학회지
    • /
    • 제17권2호
    • /
    • pp.85-92
    • /
    • 2012
  • Flows over a square cylinder with and without plasma actuation are numerically investigated to see whether plasma actuation can effectively modify vortex shedding from the cylinder and reduce the drag and lift fluctuations. In this study, a plasma synthetic jet actuator is mounted on the rear side of cylinder as a means of direct-wake control. The effect of plasma actuation is considered by adding a momentum forcing term in the Navier-Stokes equations. Results show that the reduction of mean drag and lift fluctuations is obtained for both steady and unsteady actuation. However, the steady actuation is better than the unsteady one in terms of mean drag as well as drag fluctuations. With the strong steady actuation considered, the interaction of two separating shear layers from rear corners is effectively weakened due to the interference of synthetic jets. It results in a merging of synthetic-jet and shear-layer vortices and the increase of vortex shedding frequency. On the other hand, the unsteady actuation generates pulsating synthetic jets in the near wake, but it does not change the vortex shedding frequency for the actuation frequencies considered in this study.

진동하는 구 주위의 유동에 관한 수치적 연구 (Numerical Study of Flow Around an Oscillating Sphere)

  • 이진욱;이대성;하만영;윤현식
    • 설비공학논문집
    • /
    • 제22권11호
    • /
    • pp.767-772
    • /
    • 2010
  • The incompressible viscous flow past a sphere under forced oscillation is numerically investigated at a Reynolds number of 300. The immersed boundary method is used to handle the sphere oscillating vertically to the streamwise direction. There are two important variables to characterize the oscillating state of a sphere. One is an oscillating amplitude normalized by the sphere diameter is set as a fixed number of 0.2. Another is the frequency ratio which is defined by $f_e/f_o$, where fe and fo are the excited frequency and the natural frequency of vortex shedding for the stationary sphere. In this study, three different frequency ratios of 0.8, 1.0 and 1.2 are considered. The results show a periodic flow with hairpin vortices shedding from upper and lower positions as well as vortical legs obliquely extended by oscillating motion of sphere. The enveloping vortical structure experience rupture twice in one period of oscillation. As the frequency of oscillation is increased, the vortical legs are getting shorter and eventually the hairpin vortices are much closer to the adjacent one.