• Title/Summary/Keyword: Sheath Flow

Search Result 46, Processing Time 0.022 seconds

Evaluation of Sperm Sex-Sorting Method using Flow Cytometry in Hanwoo (Korean Native Cattle)

  • Yoo, Han-Jun;Lee, Kyung-Jin;Lee, Yong-Seung;Lee, Chang-Woo;Park, Joung-Jun;Cheong, Hee-Tae;Yang, Boo-Keun;Park, Choon-Keun
    • Journal of Embryo Transfer
    • /
    • v.27 no.1
    • /
    • pp.37-43
    • /
    • 2012
  • This study evaluated a method of sorting X and Y chromosomes based on size using the forward angle light scatter related refractive index (FSC) of a flow cytometer. Hanwoo bulls sperm were separated to X and Y chromosomes by the parameters of FSC or Hoechst 33342 intensity. As a result, using monitor program linked flow cytometry during sorting processing, the purities were $97{\pm}0.57$ or $96{\pm}0.67%$ for the X-fraction and $96{\pm}0.33$ or $97{\pm}1.33%$ for the Y-fraction in the two sperm sorting methods. There were no differences in the X and Y ratios (X and Y %) between the sperm sorting methods based on FSC or DNA content. The proportions of female and male embryos used for in vitro fertilization and development were $66.03{\pm}3.31$ or $69.37{\pm}1.41%$, and $70.56{\pm}2.42$ or $56.11{\pm}3.09%$ when sperm were processed using the sex sorting method by FSC or Hoechst 33342. In conclusion, further study is needed to determine the optimum procedure and improve the nozzle to enhancing sorting accuracy or efficiency. Also, the findings of this study do not negate the possibility that the difference method of sperm sorting cannot use a UV laser beam.

Neck Clipping of Giant Aneurysm in ICA Using Intra-Operative Temporary Balloon Occlusion and Suction Decompression Technique - A Case Report - (술중 풍선 확장을 이용한 일시적 근위부 결찰과 흡입, 감압술을 실시한 내경동맥의 거대동맥류 결찰 - 증례보고 -)

  • Weon, Keun Soo;Shin, Yong Sam;Park, Han Jun;Lee, Seung Un;Yun, Su Han;Cho, Ki Hong;Cho, Kyung Gi
    • Journal of Korean Neurosurgical Society
    • /
    • v.30 no.sup1
    • /
    • pp.165-169
    • /
    • 2001
  • Apatient, 51 years old woman, had suffered form headache and decrease of visual acuity. She had $3{\times}3cm$ sized giant aneurysm originated in cavernous and clinoid portion of left ICA(C4,C5) in the cerebral angiography. Before craniotomy, left CCA was exposed and 6F double lumen catheter was inserted in left ICA through the sheath. Pre-operative angiography was done. balloon catheter was positioned at the petrous portion of ICA. Eyebrow approach was done and giant aneurysm was exposed. The proximal blood flow was controlled with balloon dilatation and suction and decompression was tried, then multiple clips were applied. The loss of distal blood flow under intra-operative angiography was notified after clipping. The position of clips were repositioned to preserve blood flow & the rich flow was confirmed at distal part of clipping. In the post-operative cerebral angiography, the same finding was shown.

  • PDF

Wearing Performance and Comfort Property of PTT/Wool/Modal Air Vortex Yarn Knitted Fabrics (PTT/Wool/Modal Air vortex사 편성물의 의류 착용성능과 쾌적물성)

  • Kim, Hyunah
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.40 no.2
    • /
    • pp.305-314
    • /
    • 2016
  • This paper investigated the applicable possibility of PTT and wool staple fibers to the air vortex system as high quality yarns for a high emotional and comfort garment. It was found that the tactile hand of vortex yarn knitted fabrics was harsher than ring and compact yarns knitted fabrics. It was observed that formability and sewability of air vortex yarn knitted fabrics seemed worse than ring and compact yarns due to low tensile and compressional resilience and high bending and shear hysteresis of air vortex yarn knitted fabrics. It revealed that wicking and drying rates of air vortex yarn knitted fabric were better than ring and compact yarns; in addition, the heat keepability of vortex yarn knitted fabric was higher than ring and compact yarns due to low thermal conductivity and max heat flow rate ($Q_{max}$). Any difference of thermal shrinkage between air vortex and ring yarn knitted fabrics was not shown, but pilling characteristic of air vortex yarn knitted fabric was superior. However, it was shown that wicking, drying, thermal property and pilling characteristics of air vortex yarn knitted fabric were superior due to air vortex yarn structure with parallel fibers in the core part and periodical and fasciated twists in the sheath part of the yarns.

Synthesis of High Purity Aluminum Nitride Nanopowder in Ammonia and Nitrogen Atmosphere by RF Induction Thermal Plasma (RF 유도결합 열 플라즈마를 이용한 암모니아와 질소분위기에서 고순도 AlN 나노 분말의 합성)

  • Kim, Kyung-In;Choi, Sung-Churl;Kim, Jin-Ho;Hwang, Kwang-Taek;Han, Kyu-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.3
    • /
    • pp.201-207
    • /
    • 2014
  • High-purity aluminum nitride nanopowders were synthesized using an RF induction thermal plasma instrument. Ammonia and nitrogen gases were used as sheath gas to control the reactor atmosphere. Synthesized AlN nanopowders were characterized by XRD, SEM, TEM, EDS, BET, FTIR, and N-O analyses. It was possible to synthesize high-purity AlN nanoparticles through control of the ammonia gas flow rate. However, additional process parameters such as plasma power and reactor pressure had to be controlled for the production of high-purity AlN nanopowders using nitrogen gas.

Modelling and Analysis of Electrodes Erosion Phenomena of $SF_6$ Arc in a Laval Nozzle

  • Lee, Byeong-Yoon;Liau, Vui Kien;Song, Ki-Dong;Park, Kyong-Yop
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.972-974
    • /
    • 2005
  • The present work deals with the theoretical study of the effects of copper vapours resulting from the erosion of the electrodes on the properties of a SF6 arc in a Laval nozzle. Computations have been done for a DC arc of 1000A with upstream gas pressure of 3.75MPa. The arc plasma is assumed to be in local thermodynamic equilibrium(LTE). The sheath and non-equilibrium region around the electrodes are not considered in this model. However, its effects on the energy flux into the electrodes are estimated from some experimental and theoretical data. The turbulence effects are calculated using the Prandtl mixing length model. A conservation equation for the copper vapour concentration is solved together with the governing equations for mass, momentum and energy of the gas mixture. Comparisons were made between the results with and without electrodes erosion. It has been found that the presence of copper vapours cools down the arc temperature due to the combined effects of increased radiation and increased electrical conductivity. The copper vapour distribution is very sensitive to the turbulent parameter. The erosion of upstream electrode(cathode) has larger effects on the arc compared to the downstream electrode(anode) as the copper vapour eroded from the anode cannot diffuse against the high-speed axial flow.

  • PDF

Simulation of Capacitively Coupled RF Plasma; Effect of Secondary Electron Emission - Formation of Electron Shock Wave

  • Park, Seung-Kyu;Kim, Heon-Chang
    • Journal of the Semiconductor & Display Technology
    • /
    • v.8 no.3
    • /
    • pp.31-37
    • /
    • 2009
  • This paper presents one and two dimensional simulation results with discontinuous features (shocks) of capacitively coupled rf plasmas. The model consists of the first two and three moments of the Boltzmann equation for the ion and electron fluids respectively, coupled to Poisson's equation for the self-consistent electric field. The local field and drift-diffusion approximations are not employed, and as a result the charged species conservation equations are hyperbolic in nature. Hyperbolic equations may develop discontinuous solutions even if their initial conditions are smooth. Indeed, in this work, secondary electron emission is shown to produce transient electron shock waves. These shocks form at the boundary between the cathodic sheath (CS) and the quasi-neutral (QN) bulk region. In the CS, the electrons emitted from the electrode are accelerated to supersonic velocities due to the large electric field. On the other hand, in the QN the electric field is not significant and electrons have small directed velocities. Therefore, at the transition between these regions, the electron fluid decelerates from a supersonic to a subsonic velocity in the direction of flow and a jump in the electron velocity develops. The presented numerical results are consistent with both experimental observations and kinetic simulations.

  • PDF

CFD Analytical Analysis of Jetting Characteristics in Aerosol Jet Printing Process Using Particle Tracking Technique (입자 추적 기법을 활용한 에어로졸 제트 프린팅 공정의 분사 특성에 대한 CFD 해석적 분석)

  • Sang-Min Chung;Seungwoon Park;Euikeun Choi;Soobin Oh;Chul-Hee Lee
    • Journal of Drive and Control
    • /
    • v.21 no.1
    • /
    • pp.8-15
    • /
    • 2024
  • This thesis investigates the jetting characteristics of an aerosol jet printing (AJP) process as a function of design and operating conditions. The governing equations of the AJP system are derived for experimentation and analysis. To understand the characteristics of the AJP system, it analyzes the jetting characteristics as a function of the flow rate of the carrier gas and the sheath gas, and the variation of the linewidth with the nozzle exit size based on particle tracking. The thesis focuses on computational fluid dynamics (CFD), which is a computer simulation. The particle tracking results obtained by CFD were analyzed using MATLAB. CFD analytical models can be analyzed in environments with different conditions and consider more specific situations than mathematical computational models. The validity of the CFD analysis is shown by comparing the experimental results with the CFD analysis.

CFD Analytical Analysis of Jetting Characteristics in Aerosol Jet Printing Process Using Particle Tracking Technique (입자 추적 기법을 활용한 에어로졸 제트 프린팅 공정의 분사 특성에 대한 CFD 해석적 분석)

  • Sang-Min Chung;Seungwoon Park;Euikeun Choi;Soobin Oh;Chul-Hee Lee
    • Journal of Drive and Control
    • /
    • v.21 no.2
    • /
    • pp.8-14
    • /
    • 2024
  • This paper investigates the jetting characteristics of an aerosol jet printing (AJP) process as a function of design and operating conditions. The governing equations of the AJP system are derived for experimentation and analysis. To understand the characteristics of the AJP system, this thesis analyzes the jetting characteristics as a function of the flow rate of the carrier gas and the sheath gas, and the variation of the linewidth with the nozzle exit size based on particle tracking. This thesis focuses on computational fluid dynamics (CFD), which is a computer simulation. The particle tracking results obtained by CFD were analyzed using MATLAB. CFD analytical models can be analyzed in environments with different conditions and consider more specific situations than mathematical computational models. The validity of the CFD analysis is shown by comparing the experimental results with the CFD analysis.

COMPARISON OF DRYOUT POWER DATA BETWEEN CANFLEX MK-V AND CANFLEX MK-IV BUNDLE STRINGS IN UNCREPT AND CREPT CHANNELS

  • JUN JI SU;LEUNG L.K.H.
    • Nuclear Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.565-574
    • /
    • 2005
  • The CANFLEX Mk-V bundle is designed to improve upon the critical heat flux (CHF) characteristics of the CANFLEX Mk-IV bundle. The main difference between these two bundles is an increase in bearing pad height of about 0.3 mm in the CANFLEX Mk-IV bundle. This change in bearing pad height leads to an increase in gap flow at the bottom of the bundle, primarily eliminating the localized narrow-gap effect that limits the CHF of the CANFLEX Mk-IV bundle. The objective of this paper is to examine the effects of bearing pad height and pressure tube creep on the sheath-temperature distribution, dryout power, and dryout location, as observed ken full-scale bundle tests, between CANFLEX Mk-IV and Mk-V bundles In uncrept and crept channels. A comparison of surface-temperature differences between the top and bottom elements of the bundles showed that increasing the bearing pad height has led to a more homogeneous enthalpy distribution in subchannels of the bundle. Initial dryout locations of the CANFLEX Mk-V bundle were mainly observed at the mid-spacer plane of either the $10^{th}$ (about $80\%$) or $11^{th}$ ($20\%$) bundle in the 12-bundle string, as compared to the mid-spacer and downstream-button planes for the CANFLEX Mk-IV bundle. Dryout power and boiling-length-average (BLA) CHF values exhibit consistent trends and little scatter with varying flow conditions for both types of CANFLEX bundles in uncrept and crept channels. An increase in pressure tube creep has led to a reduction in dryout power (about $20\%$ far the $3.3\%$ crept channel and $27\%$ for the $5.1\%$ crept channel as compared to dryout powers for the uncrept channel). Increasing the bearing pad height of the CANFLEX bundle has led to an increase in the dryout power. Overall, the dryout power of the CANFLEX Mk-V bundle is 7 to $10\%$ higher than that of the CANFLEX Mk-IV bundle at the inlet temperature range of interest (i.e., between 243 and $290^{\circ}C$).

An Application of the Water Mist System for Underground Utility Tunnel (지하구 미분무수 소화설비 적용에 관한 연구)

  • 김운형;김종훈;박승민;김태수;민인홍;전동일;김상욱
    • Fire Science and Engineering
    • /
    • v.16 no.1
    • /
    • pp.66-76
    • /
    • 2002
  • This paper includes new nozzle design, basic design factors of water mist system that minimize a thermal damage of cable causing business interruption and applying underground utility tunnel. A underground concrete structure (2.5 m(H)$\times$2.5 m(W)$\times$25 m(D)) is constructed in order to test a nozzle performance. Under the designing fire scenario, critical thermal damage of cable sheath ($400^{\circ}c$) reached within a 2 minutes with unsuppressed fire, but type 1 nozzle (SMD 470 $\mu{m}$) and type 2 nozzle (SMD 650 $\mu{m}$) control cable temperature below $400^{\circ}c$. A system performance and fundamental design factors; K factor, flow rate, spray angle, size distribution, nozzle pressure, spray density are analyzed and proposed for system optimization.