• Title/Summary/Keyword: Shearing property

Search Result 41, Processing Time 0.032 seconds

A Study on the Mechanical and Hand Properties of Knitted Fabrics - Focused on the 2 Colors Jacquard - (편성물의 역학적 특성과 태 평가 - 2 칼라 자카드를 중심으로-)

  • Koo, Mi-Ran
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.12 no.3
    • /
    • pp.93-103
    • /
    • 2010
  • The results of comparison and analysis of dynamical features according to Jacquard structure are as follows. Regarding elongation(E) value in tensile property, the value in the direction of course was found to be larger in all Jacquard structure, except floating Jacquard, than the direction of wale. It could be found that, as to bending strength(B) in Bending Property, the value of bending strength in the direction of course smaller in all the textile(structure) except floating than the direction of wale, so that the ability of curve formation is excellent. And in case of floating Jacquard, it showed the smallest value in the direction of course and wale, so that it was interpreted as Jacquard having a soft feel. Blister Jacquard showed the highest value in both directions of course and wale, so that it was evaluated as Jacquard having the hardest touch. With regard to shearing character(G) and shearing hysteresis(2HG) in Shearing Property, Jacquard indicated the lowest value, so it was evaluated as the textile(structure) having high drape the transformation of whose fabric is easy. In addition, normal Jacquard, transfer Jacquard, blister Jacquard showed a high value, so that it could be known they are Jacquards having stiff touch. The study implies that normal Jacquard, bird's eye Jacquard, etc., which well stretch in the direction of a course like tubular Jacquard course, is better to make the margin a little shorter than the basic margin, and Jacquard that well stretches in the direction of wale like ladder's back Jacquard and floating Jacquard is better to make the margin longer and the length shorter than the basic margin.

  • PDF

Correlations among Shearing Force, Morphological Characteristic, Chemical Composition, and In situ Digestibility of Alfalfa (Medicago sativa L) Stem

  • Liu, L.;Yang, Z.B.;Yang, W.R.;Jiang, S.Z.;Zhang, G.G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.4
    • /
    • pp.520-527
    • /
    • 2009
  • Alfalfa (Medicago sativa L) is a high-quality forage for ruminants and the main stem is the dominant morphological component contributing to the forage nutritive value in mature alfalfa forage. Shearing force, a fracturing property of plant stem, is an important indictor of forage value. The objectives of this study were to investigate the effects of morphological characteristic on shearing force, the relationship between shearing force and chemical composition, and the relationship between shearing force and in situ digestibility of alfalfa stem. The results showed that linear density (weight per unit length of stem) was more important than chemical composition in affecting shearing force. There was a positive relationship between lignin content and shearing force (r = 0.78). Correlations were not found between shearing force and other chemical components such as neutral detergent fiber (NDF), acid detergent fiber (ADF), cellulose and hemicelluloses. In situ digestibility (of dry matter and NDF) was related to shearing force. A negative correlation was found between shearing force and dry matter (DM) digestibility (r = -0.70), and there was also a negative correlation between shearing force and NDF digestibility (r = -0.87). When shearing force was standardized for stem diameter or stem linear density, the relationship between shearing force and digestibility was consistent regardless of stem diameter and stem linear density. Shearing force was significantly correlated with lignin content and in situ digestibility (of DM and NDF), and was a more direct indicator for estimating forage nutritive value related to animal performance, so it can be used to predict the forage value of alfalfa.

A Study on the Fatigue Phenomena of Woven Fabrics -On the Changes of Mechanical Properties and Handle of Woven Fabrics Caused by the Wearing- (직물의 피노에 관한 연구 -착용에 의한 역학적 성질과 태의 변화-)

  • Suh Young Sook
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.10 no.1
    • /
    • pp.47-57
    • /
    • 1986
  • The purpose of this study is to investigate fatigue phenomema of woven fabric. In order to obtain the basic data which is available for predicting the fabric fatigue phenomena, the change of mechanical properties of woven fabrics caused by the wearing and the changes of mechanical properties of woven fabrics which were subjected to repeated tensile-shearing deformation using fabric testing machine has been investigated and compared. The fatigue of woven fabrics was examined with the value of basic mechanical properties of specimens measured by the KES-F fabric testing system and their hand value and wearing ability. The results were as follows. 1) The fatigue phenomena of woven fabrics by the wearing for 800 hours are different on the position of the body: On the portion of hip, the change of surface property was the greatest, bending hysterisis was greatly increased, thickness weight, stiffness, fullness shearing hysterisis were more increased than original fabric and T.H.V. was decreased. On the portion of knee, decreasing of tensile resilience and increasing of bending, shearing hysterisis were observed greater than any other part, and increasing of stiffness, crispness was more than original fabric. On the bottom area, the changes of mechanical property was comparatively small, H.V. and T.H.V. showed near the value of the original fabric. 2) By drycleaning most of mechanical properties showed the tendency to recover the value of the original fabric, but bending hysterisis and thickess were increased, tensile and com-pression resilience were decreased more than original fabric in all parts. 3) The fatigue phenomena caused by fabric fatigue testing machine were as follows. The decreasing of hystersis in the repeated deformation such as bending, shearing was appeared at the $10^2$ deformation, but with the increasing cycle, the tendency was slightly regained. Handle value was also appeared the lowest value at the $10^2$ deformation.

  • PDF

Effect of Neonicochid Type Wood Preservative on Adhesive Properties of Resorcinol Resin for Lminated Wood (네오니코치드계 목재보존제가 집성재 제조용 레조르시놀 수지의 접착력에 미치는 영향)

  • Lee, Dong Heub;Lee, Jong Shin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.1
    • /
    • pp.34-40
    • /
    • 2014
  • The effect of neonicochid type wood preservatives on adhesive properties of resorcinol-formaldehyde resin for laminated wood manufacture was examined. By the previous studies, it was verified that the neonicochid type preservative has a high termite-proofing and anti-mold effectiveness. Commercial ACQ (ammoniacal copper quaternary compounds) and CUAZ (copper azol compounds) were used as comparison preservatives of effects on adhesive properties. The wood specimens used japanese red pine (Pinus densifrora) after application with preservatives and then bonded with resorcinol-formaldehyde resin. Adhesive properties were evaluated by shearing strength of adhesive bond and wood failure to dry condition or after accelerated aging test. Of all laminated woods, the wood specimens spread with ACQ or CUAZ showed the lowest shearing strength of adhesive bond. We estimated that the decrease of shearing strength was caused by copper in the ACQ or CUAZ preservatives. On the application of the neonicochid type preservatives, the wood specimens showed the highest shearing strength even after accelerated aging test. From these results, it is concluded that the copper-free neonicochid type preservative not affected the curing of resorcinol-formaldehyde resin.

Blending Effect on the Mechanical and Hand Properties of Wool/Acrylic Blend Knits

  • Park Myung-Ja
    • The International Journal of Costume Culture
    • /
    • v.8 no.1
    • /
    • pp.23-31
    • /
    • 2005
  • Mechanical properties and hand evaluation of wool/acrylic(W/A) blend knits were conducted before and after repeated washing to get the optimum W/A blending ratio, which could help achieve the optimum mechanical and hand properties of the knits. The five test fabrics using the yarns with different W/A blending ratios($\%$), 100/0, 70/30, 50/50, 30/70, 0/100, were knitted. The fabrics were washed by a rotating drum type washing machine. Then, objective mechanical and hand properties were evaluated by KES-FB, Kawabata evalution system for fabric. The results are as follows: there was no change in the hand value of the knitted fabric with the W/A-blended yarn caused by the change in the blending ratio before washing. After washing, however, the increase of acrylic's blending rate caused the bending property to decrease proportionally, while the friction coefficient of the surface property increased. Furthermore, the study showed that W/A 50/50 possesses the most superior tensile property and shearing property, which could attain the optimum blending ratio. Similar results in hand value were derived in all the samples. After washing, however, the increase in acrylic's blending rate caused a proportional decrease in KOSHI and an increase in FUKURAMI. In addition, W/A 50/50 gained the biggest NUMERI value, again corresponding to the optimum blending ratio. Similar results in total hand value were derived in all the samples before washing. After washing, though, all the total hand values decreased, and, as the wool fabric's blending rate increased, the total hand values proportionally decreased further.

  • PDF

The Effects of Sewing Thread Materials and Sewing Methods on Mechanical Properties of Knitwear (봉제원사와 봉제방법에 따른 니트웨어의 역학적 특성)

  • Kang, Sook-Nyeo;Kwen, Jin
    • Journal of the Korean Society of Costume
    • /
    • v.57 no.2 s.111
    • /
    • pp.1-10
    • /
    • 2007
  • This study aims at the improvement of sewing function through understandings of dynamic property about the sewing methods and the thread material selection in knitwear. The tensile strength and shear of KES-FB and the Instron were measured for the analysis of the mechanical properties. The knit cloth was structured In the plain stitch, $1\times1$ rib stitch and $2\times1$ rib stitch with the combination of wool and cotton. With regard to the sewing method, intralooping and interlacing were applied. For thread materials, polyester, cotton, wool and silk were used. Since silk has the lowest extension and similar values regardless of its construction in intralooping, it is available knit apparel with uniform elastic recoverv. It also has small shearing resistance. It can be used in apparel which needs big mobility, but it causes rutting problem. Therefore, it is suitable to use intralooping. When the same sewing yarn and textile are use, it can lower shearing resistance and extension in intralooping, Since wool needs a lot of extension energy and it can be cut, intralooping is more suitable than interlacing in sewing of wool. In interlacing using polyester, extension and shearing resistance are high. Therefore, it is suitable for knit sewing with high massing. Silk is not suitable for interlacing since it can be rut. Even though knit materials are different, the RT values of polyester and cotton are similar in same construction. Therefore, they can be substituted each other considering resilience after sewing.

Mechanical Properties Change of the Slacks Knee Part by the Bending Time (굽힘반복에 따른 슬랙스 무릎부위의 역학적특성 변화)

  • Lee, Joung-Suk;Kwon, Hyun-Sun;Sung, Su-Kwang
    • Fashion & Textile Research Journal
    • /
    • v.6 no.4
    • /
    • pp.497-502
    • /
    • 2004
  • The mechanical properties of jean slacks to the type of cutting lines in knee region and the bending time, after doing bending 0 times, 500 times, and 1500 times, the effects of whether or not cutting line, the fabric direction of the cutting area, and the number of cutting lines were investigated for tensile, shearing, compression, and mixing value of mechanical properties. The results are as follows: EM to bending times were larger in order of weft

Development of PET Flame Retardant Sheets for Industrial Materials by Control of Manufacturing Process (제조공정제어에 의한 친환경 고성능 산업용 PET 난연시트 제조기술의 개발)

  • Kim, Hea-In;Hong, Yo-Han;Park, Soo-Min
    • Textile Coloration and Finishing
    • /
    • v.21 no.4
    • /
    • pp.46-56
    • /
    • 2009
  • In order to establish the standard manufacturing condition of PET flame retardant sheets, physicochetnical properties of the samples made by the conventional flame-retardant finishing were systematically investigated, including compatibility among flame retardant agent and finishing auxiliaries, surface property, and wicking property. From this results, the addition of washing and renapping process after the shearing process was required for the more effective in producing PET flame-retardant sheet by the standard finishing. The effect of the modification of the regular flame retardant finishing process was studied by FTIR, TGA, and flame retardancy test.

Development of Retrofit Method for Beam Using Steel Plate Reinforced by Fiber Sheet (1) (무소음무진동 보보강공법 개발에 관한 연구(1))

  • Kim WooJae;Choi jong moon;Back Sang Tea;Jung SangJin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.781-784
    • /
    • 2004
  • Method of Steel plate reinforced by fiber sheet is advantageous in the secure loading facility. For this method are a light weight and a high strength, the thickness of steel can be reduced Effects of composite system are depreciated when the thickness of steel is thin. This is the result of the difference of ductility ratio with steel plate. Steel plate reinforced by fiber sheets confirms the ability of transformation. This is the result of the property of steel materials Steel plate reinforced by fiber sheet didn't display an enough performance when theadhesives are epoxy rosin. This is the result of the slide of the surface of stee1. The adhesive ability is varied by the number and span of anchor bolts. There wasn't happening the separation between steel and epoxy. Thus the method used in combination with anchor and epoxy is best excellent. This is the result of the upward of accumulation effects Shearing force is in proportion to the number of bolts. But the ability of shearing force per one bolt is reducing. Thickness of steel plate reinforced by fiber sheet must be designed so that steel is endure before concrete is wreck.

  • PDF

Effects of Span-to-depth Ratio and Poisson's Ratio on Elastic Constants from Bending and Plate Tests

  • Jeong, Gi Young;Kong, Jin Hyuk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.2
    • /
    • pp.177-185
    • /
    • 2015
  • The goal of this study is to evaluate the limitation of ASTM D 198 bending and ASTM D 3044 in determination of elastic modulus and shear modulus. Different material properties and span to depth ratios were used to analyze the effects of material property and testing conditions. The ratio of true elastic modulus to apparent elastic modulus evaluated from ASTM D 198 bending sharply decreased with increment of span to depth ratio. Shear modulus evaluated from ASTM D 198 bending decreased with increment of depth, whereas shear modulus evaluated from ASTM D 3044 was hardly influenced by increment of depth. Poisson's ratio influenced shear modulus from ASTM D 198 bending but did not influence shear modulus from ASTM D 3044. Different shearing factor was obtained for different depths of beams to correct shear modulus obtained from ASTM D 198 bending equivalent to shear modulus from theory of elasticity. Equivalent shear modulus of materials could be obtained by applying different shearing factors associated with beam depth for ASTM D 198 bending and correction factor for ASTM D 3044.