• Title/Summary/Keyword: Shear-stress

Search Result 3,987, Processing Time 0.029 seconds

Shear failure and mechanical behavior of flawed specimens containing opening and joints

  • Zhang, Yuanchao;Jiang, Yujing;Shi, Xinshuai;Yin, Qian;Chen, Miao
    • Geomechanics and Engineering
    • /
    • v.23 no.6
    • /
    • pp.587-600
    • /
    • 2020
  • Shear-induced instability of jointed rock mass has greatly threatened the safety of underground openings. To better understand the failure mechanism of surrounding rock mass under shear, the flawed specimens containing a circular opening and two open joints are prepared and used to conduct direct shear tests. Both experimental and numerical results show that joint inclination (β) has a significant effect on the shear strength, dilation, cracking behavior and stress distribution around flaws. The maximum shear strength, occurring at β=30°, usually corresponds to a unifrom stress state around joint and an intense energy release. However, a larger joint inclination, such as β=90°~150°, will cause a more uneven stress distribution and a stronger stress concentration, thus a lower shear strength. The stress distribution around opening changes little with joint inclination, while the magnitude varys much. Both compression and tension around opening will be greatly enhanced by the 30°-joints. In addition, a higher normal stress tends to enhance the compression and suppress the tension around flaws, resulting in an earlier generation and a larger proportion of shear cracks.

Development of a Digital Device for Measuring Soil Physical Properties (I) - Digital Shear Stress Sensor - (토양 물리성 측정을 위한 디지털 장치 개발(I) - 디지털 전단저항 측정장치 -)

  • Park, Jun-Gul;Lee, Kyou-Seung;Cho, Seung-Chan;Lee, Dong-Hoon;Chang, Young-Chang;Noh, Kwang-Mo
    • Journal of Biosystems Engineering
    • /
    • v.33 no.6
    • /
    • pp.416-422
    • /
    • 2008
  • This study was performed to design and construct a digital soil shear stress sensor in order to replace the conventional devices for measuring soil shear property. The developed digital shear stress measuring device can store measured data with GPS position information as a vector format into a computer. Based on the experiments at various field conditions, the measuring characteristic of the device was quite similar to that of a conventional device, SR-2 that has been a major tool to measure the soil shear property. It was concluded that the digital shear stress measuring device was an effective and comprehensive sensor for measuring soil shear property.

Stress-Dependent Failure Criteria for Marine Silty Sand Subject to Cyclic Loading (반복하중을 받는 해양 실트질 모래의 응력기반 파괴기준)

  • Ryu, Tae Gyung;Kim, Jin Man
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.11
    • /
    • pp.15-23
    • /
    • 2015
  • An experimental study has been conducted to evaluate the effects of average and cyclic shear stresses on the undrained failure behaviors of dense marine silty sand by using the Cyclic Direct Simple Shear apparatus. The results show that when the average shear stress ratio is zero, symmetric cyclic shear deformation is the major component of deformation, and permanent shear deformation is relatively small. On the other hand, when the average shear stress ratio is larger than zero, asymmetric permanent shear deformation is the major component, and cyclic shear deformation does not change much as the number of cyclic loads increases. The average shear stress ratio has less effects on the number of cyclic loads needed to fail, as compared with the cyclic shear stress ratio. The proposed stress-dependent failure contour can effectively be used to assess the cyclic shear strength of soil beneath the foundation for the design of offshore structures.

Fluid Dynamics near end-to-end Anastomoses Part III in Vitro wall Shear Stress Measurement

  • Kim, Y.H.
    • Journal of Biomedical Engineering Research
    • /
    • v.13 no.3
    • /
    • pp.253-262
    • /
    • 1992
  • The wall shear stress in the vicinity of end-to end anastomoses under steady flow condi- tions was measured using a flush-mounted hot-film anemometer(FMHFA) probe. The experi- mental measurements were in good agreement lith numerical results except In flow with low Reynolds numbers. The wall shear stress increased proximal to the anastomosis in flow from the Penrose tubing (simulating an artery) to the PTFE graft. In flow from the PTFE graft to the Penrose tubing, low wall shear stress was observed distal to the anastomosis. Abnormal distributions of wall shear stress in the vicinity of the anastomosis, resulting from the compli- ance mismatch between the graft and the host artery, might be an important factor of ANFH formation and the graft failure. The present study suggests a correlation between regions of the low wall shear stress and the development of anastomotic neointimal fibrous hyperplasia (ANFH) in end-to-end anastomoses.

  • PDF

Cracking behavior of RC shear walls subject to cyclic loadings

  • Kwak, Hyo-Gyoung;Kim, Do-Yeon
    • Computers and Concrete
    • /
    • v.1 no.1
    • /
    • pp.77-98
    • /
    • 2004
  • This paper presents a numerical model for simulating the nonlinear response of reinforced concrete (RC) shear walls subject to cyclic loadings. The material behavior of cracked concrete is described by an orthotropic constitutive relation with tension-stiffening and compression softening effects defining equivalent uniaxial stress-strain relation in the axes of orthotropy. Especially in making analytical predictions for inelastic behaviors of RC walls under reversed cyclic loading, some influencing factors inducing the material nonlinearities have been considered. A simple hysteretic stress-strain relation of concrete, which crosses the tension-compression region, is defined. Modification of the hysteretic stress-strain relation of steel is also introduced to reflect a pinching effect depending on the shear span ratio and to represent an average stress distribution in a cracked RC element, respectively. To assess the applicability of the constitutive model for RC element, analytical results are compared with idealized shear panel and shear wall test results under monotonic and cyclic shear loadings.

Effect of shear deformation on adhesive stresses in plated concrete beams: Analytical solutions

  • Touati, Mahmoud;Tounsi, Abdelouahed;Benguediab, Mohamed
    • Computers and Concrete
    • /
    • v.15 no.3
    • /
    • pp.337-355
    • /
    • 2015
  • In this scientific work, an improved analytical solution for adhesive stresses in a concrete beam bonded with the FRP plate is developed by including the effect of the adherend shear deformations. The analysis is based on the deformation compatibility approach where both the shear and normal stresses are assumed to be invariant across the adhesive layer thickness. The shear stress distribution is supposed to be parabolic across the depth of the adherends in computing the adhesive shear stress and Timoshenko's beam theory is employed in predicting adhesive normal stress to consider the shear deformation. Numerical results from the present analysis are presented both to demonstrate the advantages of the present solution over existing ones and to illustrate the main characteristics of adhesive stress distributions.

Ring Shear Characteristics of Two Different Soils (이질 재료 간의 링 전단특성 연구)

  • Park, Sung-Sik;Jeong, Sueng-Won;Yoon, Jun-Han;Chae, Byung-Gon
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.5
    • /
    • pp.39-52
    • /
    • 2013
  • The shear stress characteristics of landslide materials can be affected by various factors. We examined the shear stress characteristics of two different soils using ring-shear apparatus, in which saturation-consolidation-shearing speed can be easily controlled. This paper presents (i) shear stress-time characteristics, (ii) shear stress depending on normal stress and shear speed and (iii) shear stress as a function of shearing speed. Materials used in this paper were the Nakdong River sand and muds taken from Jinhae coastal area in Korea. Samples were prepared in three types: Sand (upper)-Sand (lower), Clay (upper)-Clay (lower) and Sand (upper)-Clay (lower). The upper and lower indicate the samples placed in upper and lower ring shear boxes, respectively. For given normal stresses (50 and 100 kPa) and shearing speed (0.1 mm/sec), we performed ring shear tests. Then the failure lines were determined in the second test. Last, we determined the shear stress characteristics depending on different shearing speeds, such as 0.01, 0.1, 1, 10, 100 mm/sec. As a result, we found that shear stress characteristics are strongly dependent on above three factors. The shear stress of Sand (upper)-Clay (lower) is smaller than that of Sand (upper)-Sand (lower), but slightly larger than that of Clay (upper)-Clay (lower). The shear stress is also characterized by grain crushing and wetting process at slip surface.

Shear wave velocity of sands subject to large strain triaxial loading

  • Teachavorasinskun, Supot;Pongvithayapanu, Pulpong
    • Geomechanics and Engineering
    • /
    • v.11 no.5
    • /
    • pp.713-723
    • /
    • 2016
  • Shear wave velocities of three selected sandy soils subject to drained triaxial compression test were continuously measured using the bender elements. The shear wave velocity during isotropic compression, as widely recognized, increased as confining pressure increased and they were correlated well. However, during drained shearing, the mean effective stress could no further provide a suitable correlation. The shear wave velocity during this stage was almost constant with respect to the mean effective stress. The vertical stress was found to be more favorable at this stage (since confining stress was kept constant). When sample was attained its peak stress, the shear wave velocity reduced and deviated from the previously existed trend line. This was probably caused by the non-uniformity induced by the formation of shear band. Subsequently, void ratios computed based on external measurements could not provide reasonable fitting to the initial stage of post-peak shear wave velocity. At very large strain levels after shear band formation, the digital images revealed that sample may internally re-arrange itself to be in a more uniform loose stage. This final stage void ratio estimated based on the proposed correlation derived during pre-peak state was close to the value of the maximum void ratio.

Calculation model for the shear strength of unsaturated soil under nonlinear strength theory

  • Deng, Dongping;Wen, Shasha;Lu, Kuan;Li, Liang
    • Geomechanics and Engineering
    • /
    • v.21 no.3
    • /
    • pp.247-258
    • /
    • 2020
  • The shear strength of unsaturated soils, a research hotspot in geotechnical engineering, has great guiding significance for geotechnical engineering design. Although kinds of calculation models for the shear strength of unsaturated soil have been put forward by predecessors, there is still need for new models to extensively consider the nonlinear variation of shear strength, particularly for the nonlinear effect of the net normal stress on the shear strength of unsaturated soil. Here, the shear strength of unsaturated soils is explored to study the nonlinear effects of net normal stress with the introduction of a general nonlinear Mohr-Coulomb (M-C) strength criterion, and the relationship between the matric suction (or suction stress) and degree of saturation (DOS) constructed by the soil-water characteristics curve (SWCC) of van Genuchten is also applied for unsaturated soil. Then, two calculation models (i.e., an envelope shell model and an effective stress model) are established for the shear strength of unsaturated soils under the nonlinear strength theory. In these two models, the curve of the shear strength of unsaturated soils versus the net normal stress exhibits a tendency to gently. Moreover, the proposed formulas have flexibility and convenience with five parameters (for the effective stress model) or six parameters (for the envelope shell model), which are from the M-C strength parameters of the saturated soil and fitting parameters of SWCC of van Genuchten. Thereafter, by comparison with the classical theory of the shear strength of unsaturated soils from some actual cases, the rationality and accuracy of the present models were verified.

Improved analytical solution for slip and interfacial stress in composite steel-concrete beam bonded with an adhesive

  • Tayeb, Bensatallah;Daouadji, Tahar Hassaine
    • Advances in materials Research
    • /
    • v.9 no.2
    • /
    • pp.133-153
    • /
    • 2020
  • In this paper, an improved theoretical interfacial stress and slip analysis is presented for simply supported composite steel-concrete beam bonded with an adhesive. The adherend shear deformations have been included in the present theoretical analyses by assuming a linear shear stress through the thickness of the adherends, while all existing solutions neglect this effect. Remarkable effect of shear deformations of elements has been noted in the results. It is observed that large shear is concentrated and slip at the edges of the composite steel-concrete. Comparing with some experimental results from references, analytical advantage of this improvement is possible to determine the normal and shear stress to estimate exact prediction of normal and shear stress interfacial along span between concrete and steel beam. The exact prediction of these stresses will be very important to make an accurate analysis of the mode of fracture. It is shown that both the normal and shear stresses at the interface are influenced by the material and geometry parameters of the composite steel-concrete beam. This research is helpful for the understanding on mechanical behavior of the connection and design of such structures.