• Title/Summary/Keyword: Shear wave tomography

Search Result 17, Processing Time 0.018 seconds

Scour Monitoring for Offshore Foundation using Electrical Resistivity and Shear Wave Tomography (전기비저항과 전단파 토모그래피를 이용한 해상 기초구조물의 세굴도 평가)

  • Park, Kiwon;Lee, Jongsub;Choi, Changho;Byun, Yonghoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.9
    • /
    • pp.37-45
    • /
    • 2014
  • An embedded length of monopile caused by a scouring should be evaluated to monitor the stability of offshore foundations, because offshore foundations are affected by horizontal load. The objective of this study is to evaluate the scouring around offshore foundation by using electrical resistivity and to estimate ground stiffness by using shear wave tomography. The electrical resistivity profiles and shear wave tomography were measured according to the scour depth of model ground prepared with sand and cement. Several electrodes and bender elements were used to measure the electrical resistivity and shear waves, respectively. The electrode sets are attached on the monopile surface and bender elements are arranged in $7{\times}7$ arrays by using nylone frames. The electrical resistivity profiles and shear wave tomography are acquired by laboratory experiment. Maximum scour depth was estimated by electrical resistivity profiles and the ground stiffness of model ground was estimated by shear wave tomography. This study suggests that the electrical resistivity profiles and shear wave tomography may be useful for monitoring the stability of the offshore foundations.

Comparison of Shear-wave Velocity Sections from Inverting SH-wave Traveltimes of First Arrivals and Surface Wave Dispersion Curves (SH파 초동주시 역산과 표면파 분산곡선 역산으로부터 구한 횡파속도 단면 비교)

  • Lee, Chang-Min;Kim, Ki-Young
    • Journal of the Korean Geophysical Society
    • /
    • v.8 no.2
    • /
    • pp.67-74
    • /
    • 2005
  • Two-dimensional S-wave velocity sections from SH-wave refraction tomography and surface wave dispersions were obtained by inverting traveltimes of first arrivals and surface wave dispersions, respectively. For the purpose of comparison, a P-wave velocity tomogram was also obtained from a P-wave refraction profiling. P and Rayleigh waves generated by vertical blows on a plate with a sledgehammer were received by 100- and 4.5-Hz geophones, respectively. SH-waves generated by horizontal blows on both sides of a 50 kg timber were received by 8 Hz horizontal geophones. The shear-wave signals were enhanced subtracting data of left-side blows from ones of the right-side blows. Shear-wave velocities from tomography inversion of first-arrival times were compared with ones from inverting dispersion curves of Rayleigh waves. Although the two velocity sections look similar to each other in general, the one from the surface waves tends to have lower velocities. First arrival picking of SH waves is troublesome since P and PS-converted waves arrive earlier than SH waves. Application of the surface wave method, on the other hand, is limited where lateral variation of subsurface tructures is not mild.

  • PDF

Application of Bender Elements in Consolidation, Tomography, and Liquefaction Tests (압밀, 토모그래피, 액상화시험에서 벤더엘리먼트의 적용)

  • Lee, Jong-Sub;Lee, Chang-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.8
    • /
    • pp.43-54
    • /
    • 2006
  • The scope of this paper covers the applications of bender element tests in consolidation, tomography, and liquefaction. Loading and unloading time during consolidation are evaluated based on shear wave velocity. As S-wave velocity is dependent on effective stress, the loading step may be determined. However, cautions are required due to the different mechanism between the settlement and effective stress criteria. The stress history may be evaluated because the S-wave shows the cement controlled regime and stress controlled regimes. A fixed frame complemented with bender elements permits S-wave tomography The tomography system is tested at low confinement within a true triaxial cell. Results show that shear wave velocity tomography permits monitoring changes in the velocity field which is related to the average effective stress. To monitor the liquefaction phenomenon, S-wave trans-illumination is implemented with a high repetition rate to provide detailed information on the evolution of shear stiffness during liquefaction. The evolution of shear wave propagation velocity and attenuation parallel the time-history of excess pore pressure during liquefaction. Applications discussed in this paper show that bender elements can be a very effective tool for the detection of shear waves in the laboratory.

Evaluation of Debonding Defects in Railway Concrete Slabs Using Shear Wave Tomography (전단파 토모그래피를 활용한 철도 콘크리트 궤도 슬래브 층분리 결함 평가)

  • Lee, Jin-Wook;Kee, Seong-Hoon;Lee, Kang Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.3
    • /
    • pp.11-20
    • /
    • 2022
  • The main purpose of this study is to investigate the applicability of the shear wave tomography technology as a non-destructive testing method to evaluate the debonding between the track concrete layer (TCL) and the hydraulically stabilized based course (HSB) of concrete slab tracks for the Korea high-speed railway system. A commercially available multi-channel shear wave measurement device (MIRA) is used to evaluate debonding defects in full-scaled mock-up test specimen that was designed and constructed according to the Rheda 200 system. A part of the mock-up specimen includes two artificial debonding defects with a length and a width of 400mm and thicknesses of 5mm and 10mm, respectively. The tomography images obtained by a MIRA on the surface of the concrete specimens are effective for visualizing the debonding defects in concrete. In this study, a simple image processing method is proposed to suppress the noisy signals reflected from the embedded items (reinforcing steel, precast sleeper, insert, etc.) in TCL, which significantly improves the readability of debonding defects in shear wave tomography images. Results show that debonding maps constructed in this study are effective for visualizing the spatial distribution and the depths of the debondiing defects in the railway concrete slab specimen.

Two-dimensional shear-wave velocity structures of the Korea peninsula from large explosions (대규모 발파를 통한 한반도 지각의 2차원적 횡파 속도구조 연구)

  • Kim, Ki-Young;Hong, Myung-Ho;Lee, Jung-Mo;Moon, Woo-Il;Baag, Chang-Eob;Jung, Hee-Ok
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.75-79
    • /
    • 2007
  • To investigate the shear-wave velocity structures of the Korean peninsula, exploded seismic signals were recorded for 120 s along a 294-km WNW-ESE line and 150 s along a 335-km NNW-SSE line in 2002 and 2004, respectively. First arrival times of shear wave were inverted to derive the velocity tomograms. Initial shear-wave 1-D models were built using the initial P-wave velocity models used by Kim et al. and $V_p/V_s$ ratios of the IASP91 model. The raypaths indicate existence of mid-crust interfaces at the depth of 2-3 km and 16 km. The deepest significant interface corresponding to the Moho discontinuity varies in depth from 32 km to 36 km. The refraction velocity along the interface varies from 4.4 km/s to 4.6 km/s. The velocity tomograms also indicate existence of a low-velocity zone at the depth of 7.8 km under the Okchon fold belt.

  • PDF

Comparison of shear-wave sections from inverting refracted shear waves and surface wave dispersions (횡파단면 작성을 위한 굴절된 횡파와 표면파 자료 역산 결과 비교)

  • Lee, Chang, Min;Kim, Ki-Young
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.287-291
    • /
    • 2005
  • Two-dimensional velocity tomograms of P- and S-waves were obtained by inverting traveltimes of first arrivals. The two sections of shear-wave velocity show similar features as a whole, with smaller values on the section from surface wave dispersions. Difficulties in picking SH-wave phases due to noise and later arrivals than P waves and PS converted waves are experienced. In addition, a flat layer model based on the surface wave inversion prohibits applications of the method where sgear wave velocities vary strongly in the lateral direction.

  • PDF

Acoustic Properties of Gassy Sediments: Preliminary Result of Jinhae Bay, Korea (가스함유퇴적물의 음향특성: 한국 진해만의 예비결과)

  • Kim, Gil-Young;Kim, Dae-Choul;Yeo, Jung-Yoon;Yoo, Dong-Geun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.1E
    • /
    • pp.33-38
    • /
    • 2007
  • Compressional wave velocity and shear wave velocity were measured for gassy sediments collected from Jinhae Bay, Korea. To distinguish inhomogeneities of gassy sediments, Computed Tomography (CT) was carried out for gassy sediment using CT Scanner. The cored sediments are composed of homogeneous and soft mud (greater than $8{\Phi}$ in mean grain size) containing clay content more than 50%. In depth interval of gassy sediments, compressional wave velocity is significantly decreased from 1480m/s to 1360m/s, indicating that the gas greatly affects compressional wave velocity due to a gas and/or degassing cracks. Shear wave velocity shows a slight increasing pattern from ${\sim}55\;m/s$ in the upper part of the core to ${\sim}58\;m/s$ at 320 cm depth, and then decreases to ${\sim}54\;m/s$ in the lower part of the core containing a small amount of gas. But shear wave velocity in the gassy sediments is slightly greater than that of non-gassy sediments in the upper part of the core. Thus, the Vp/Vs ratio is decreased (from 30 to 25) in gas charged zone. The Vp/Vs ratio is well correlated with shear wave velocity, but no correlation with compressional wave velocity. This suggests that low concentrations of gas have little affects on shear wave velocity. By CT images, the gas in the sediments is mostly concentrated around inner edge of core liner due to a long duration after sediment collection.

Evaluation of Near Subsurface 2D Vs Distribution Map using SPT-Uphole Tomography Method (SPT-업홀 토모그래피 기법을 이용한 지반의 2차원 전단파 속도 분포의 도출)

  • Bang, Eun-Seok;Kim, Jong-Tae;Kim, Dong-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3C
    • /
    • pp.143-155
    • /
    • 2006
  • SPT-Uphole tomography method was introduced for the evaluation of near subsurface shear wave velocity (Vs) distribution map. In SPT-Uphole method, SPT (Standard Penetration Test) which is common in geotechnical site investigation was used as a source and several surface geophones in line were used as receivers. Vs distribution map which is the triangular shape around the boring point can be developed by tomography inversion. To obtain the exact travel time information of shear wave component, a procedure using the magnitude summation of vertical and horizontal components was used based on the evaluation of particle motion at the surface. It was verified that proposed method could give reliable Vs distribution map through the numerical study using the FEM (Finite Element Method) model. Finally, SPT-Uphole tomography method was performed at the weathered soil site where several boring data with SPT-N values are available, and the feasibility of proposed method was verified in the field.

Geophysical Techniques for Underwater Landslide Monitoring (수중 산사태 모니터링을 위한 지반물리탐사기술)

  • Truong, Q. Hung;Lee, Chang-Ho;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.7
    • /
    • pp.5-16
    • /
    • 2007
  • The monitoring and investigation of underwater landslide help to understand its mechanism, increase the usefuless of design and construction and reduce the losses. This paper presents three high resolution geophysical techniques electrical resisitance, ultrasonic wave reflection imaging, and shear wave tomography conducted to determine the lab-scaled submerged landslide. Electrical resistance profiles of a soil mass obtained by an electrical resistance probe provide detailed information to assess the spatial distribution of the soil mass with milimetric resolution. An ultrasonic wave image obtained by recording the reflections from interfaces of different impedance materials permits detecting layers and landslide with submilimetric resolution. The pixel based image of immersed landslides is created by the inversion of the boundary information achieved from the traveling time of shear waves. The experimental results show that the ultrasonic wave imaging and the electrical resistance can provide complementary information; and their association with S-wave tomography image can produce a 3-D view of the underwater landslide. This study suggests that geophysical techniques may be effective tools for the detection of the underwater landslides and spatial distribution offshore.

Establishment and Verification of SPT-uphole method for Evaluating Shearwave Velocity of a site (지반의 전단파 속도 도출을 위한 SPT 업홀 기법의 확립 및 검증)

  • Bang, Eun-Seok;Kim, Jung-Ho;Seo, Won-Seok;Kim, Dong-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.142-152
    • /
    • 2008
  • SPT-Uphole method was introduced for the evaluation of near subsurface shear wave velocity (Vs) profile. In SPT-Uphole method, SPT (Standard Penetration Test) which is common in geotechnical site investigation was used as a source and several surface geophones in line were used as receivers. 1D shearwave velocity profile can be obtained in the manner of downhole method, Vs distribution map which is the triangular shape around the boring point can be developed by tomography inversion. To obtain the exact travel time information of shear wave component, a procedure using the magnitude summation of vertical and horizontal components was used based on the evaluation of particle motion at the surface. It was verified that proposed method could give reliable Vs distribution map through the numerical study using the FEM (Finite Element Method) model. Finally, SPT-Uphole method was performed and the feasibility of proposed method was verified in the field.

  • PDF