• Title/Summary/Keyword: Shear stress-displacement relationship

Search Result 38, Processing Time 0.022 seconds

Finite Element Analysis of the Direct Shear Test (직접 전단시험의 유한 요소 해석)

  • 이장덕
    • Geotechnical Engineering
    • /
    • v.12 no.6
    • /
    • pp.21-36
    • /
    • 1996
  • The stress transfer mechanism between soil and grid reinforcements involves two basic mechanism : frictional soil resistance and passive soil resistance. However the mechanism of the passive soil resistance is very complex to understand. To study the failure mechanism of ribbed reinforcement, the direct shear tests which are dominated by passive soil resistance are analyzed by using the finite element method. The finite element method is used to examine the effects of ribs on this passive soil resistance development and the met hanism of failure. The calculated behavior of the ribbed reinforcement is compared with the measured behavi or. Comparisons between the measured and the simulated strain pat terns, failure modes and load displacement relationship are presented. The behavior of the ribbed reinforcements in a cohesive soil is predicted on the basis of a good agreement between the measured and the Predicted behavior of the Ottawa sand.

  • PDF

Effect of roughness on interface shear behavior of sand with steel and concrete surface

  • Samanta, Manojit;Punetha, Piyush;Sharma, Mahesh
    • Geomechanics and Engineering
    • /
    • v.14 no.4
    • /
    • pp.387-398
    • /
    • 2018
  • The present study evaluates the interface shear strength between sand and different construction materials, namely steel and concrete, using direct shear test apparatus. The influence of surface roughness, mean size of sand particles, relative density of sand and size of the direct shear box on the interface shear behavior of sand with steel and concrete has been investigated. Test results show that the surface roughness of the construction materials significantly influences the interface shear strength. The peak and residual interface friction angles increase rapidly up to a particular value of surface roughness (critical surface roughness), beyond which the effect becomes negligible. At critical surface roughness, the peak and residual friction angles of the interfaces are 85-92% of the peak and residual internal friction angles of the sand. The particle size of sand (for morphologically identical sands) significantly influences the value of critical surface roughness. For the different roughness considered in the present study, both the peak and residual interaction coefficients lie in the range of 0.3-1. Moreover, the peak and residual interaction coefficients for all the interfaces considered are nearly identical, irrespective of the size of the direct shear box. The constitutive modeling of different interfaces followed the experimental investigation and it successfully predicted the pre-peak, peak and post peak interface shear response with reasonable accuracy. Moreover, the predicted stress-displacement relationship of different interfaces is in good agreement with the experimental results. The findings of the present study may also be applicable to other non-yielding interfaces having a similar range of roughness and sand properties.

Experimental and numerical study on large-curvature curved composite box girder under hogging moment

  • Zhu, Li;Wang, Jia J.;Zhao, Guan Y.;Huo, Xue J.;Li, Xuan
    • Steel and Composite Structures
    • /
    • v.37 no.2
    • /
    • pp.117-136
    • /
    • 2020
  • Curved steel-concrete composite box girder has been widely adopted in urban overpasses and ramp bridges. In order to investigate its mechanical behavior under complicated and combined bending, shear and torsion load, two large-curvature composite box girders with interior angles of 25° and 45° were tested under static hogging moment. Based on the strain and deflection measurement on critical cross-sections during the static loading test, the failure mode, cracking behavior, load-displacement relationship, and strain distribution in the steel plate and rebar were investigated in detail. The test result showed the large-curvature composite box girders exhibited notable shear lag in the concrete slab and steel girder. Also, the constraint torsion and distortion effect caused the stress measured at the inner side of the composite beam to be notably higher than that of the outer side. The strain distribution in the steel web was approximately linear; therefore, the assumption that the plane section remains plane was approximately validated based on strain measurement at steel web. Furthermore, the full-process non-linear elaborate finite element (FE) models of the two specimens were developed based on commercial FE software MSC.MARC. The modeling scheme and constitutive model were illustrated in detail. Based on the comparison between the FE model and test results, the FE model effectively simulated the failure mode, the load-displacement curve, and the strain development of longitudinal rebar and steel girder with sufficient accuracy. The comparison between the FE model and the test result validated the accuracy of the developed FE model.

Elasto-Plastic Behavior of Shear-Deformed Steel Braced Frame Using Finite Difference Method (유한차분법을 이용한 전단변형형 강가새 구조물의 탄소성 거동에 관한 연구)

  • 박일민
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.4
    • /
    • pp.445-454
    • /
    • 2001
  • This paper is to study elasto-plastic behavior of shear deformed braced frames. Two types of frames are considered , X-type and K-type. The slenderness ratio has been used in the parametric study. The stress-strain curve is assumed tri-linear model, and considered the strain hardening range. The finite difference method is used to solve the load-displacement relationship of the braced frames. For the elastic slope and maximum load, experimental results are compared with theoretical results and its difference remains less than 10%. Therefore suggested method in this paper is reasonable.

  • PDF

Improvement and Evaluation of Structural Performance of Steel Fiber Reinforced Concrete Beams Using Early Age Concrete (초기재령 강섬유보강 철근콘크리트 보의 구조성능 평가 및 개선)

  • Ha, Gee-Joo;Shin, Jong-Hack;Kwak, Yoon-Keun;Kwon, Chil-Sung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.3
    • /
    • pp.129-137
    • /
    • 1999
  • Reinforced concrete structures using early age concrete were result in the degradation of structural performance due to crack, overload, unexpected vibration and impact load. It demands urgently that reinforced concrete structure using early age concrete should be improved the serviceability and structural performance with the application of new fiber materials. Therefore specimens, designed by the test varibles, such as with or without stirrup and percent of steel fiber incorporated, were constructed and tested to evaluate and develop the structural performance of reinforced steel fiber concrete beam. Based on the test results reported in this study, the following conclusions are made. Specimens, designed by the over 0.75% of steel fiber incorporated, were showed the ductile behavior and failed slowly with flexure and flexure-shear. Comparing with the load-displacement relationship of specimen BSS, designed by the recommendations of the Ministry of Construction and Transportation, reinforced steel fiber concrete beam using early age concrete, over 0.75% of steel fiber incorporated, gets enough load carrying capacity and ductility. Increasing the percent of steel fiber incorporated(0.25~2.0%), the ultimate shear stress of each specimen were increased 12~40% than that of control specimen SSS.

  • PDF

Anisotropy of shear strength according to roughness in joint surface (절리면 거칠기에 의한 전단강도 이방성)

  • 이창훈;정교철
    • The Journal of Engineering Geology
    • /
    • v.12 no.4
    • /
    • pp.421-437
    • /
    • 2002
  • In order to quantify the anisotropic properties of rock included joints and shear behavior in joint surface, the mold is Produced for rock joint surface using gypsum Plaster and Peformed for replicated joint models made of cement mortar. Rock sample is measured using mechanical profilometer before testing and their result is expressed quantitatively. The statistical parameters and the fractal dimension by fractal theory for roughness is investigated its coordinate value for numerical process. The shear strength to the shear displacement in low level normal stress ismaintained or increased in most joint models. Their results present that this relationship is depended several roughness properties in joint model for natural rock joint. The relationship between the shear strength and the Properties for profiles estimated by some statistical parameter in roughness has the low correlation and is not constant. The result between the data for direct shear test and using Barton's equation, Barton's equation has not the effectiveness for the effect of anisotropy and has not suitable to recognizing the properties for joint surface. It means that JRC has not the properties of anisotropic rock surface. The fractal dimension is well correlated with the data of direct shear test than those of JRC. New experimental formulae using fractal dimension is comported with the anisotropic properties for direct shear test.

Performance evaluation of RC piers repaired by CFRP (CFRP로 보수된 RC 교각의 내진성능 평가)

  • Lee, Do-Hyung;Jeon, Jeong-Moon;Cho, Kyu-Sang;Kim, Yong-Il
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.85-88
    • /
    • 2008
  • Performance evaluation of RC bridge piers repaired by CFRP has been investigated. For this purpose, simplified CFRP stress-strain relationship has been proposed and use is made of inelastic time-dependent element developed by authors. Static time-history analysis has been carried out for a RC bridge pier repaired with CFRP. Analytical predictions shows a relatively good correlation with experimental results. In addition, in case of dynamic time-history analysis, effect of the CFRP repair intervention on shear has been evaluated. Comparative analysis reveals that a repaired member produces increased characteristics due to the repair intervention and may affect the overall response of a whole structure. Moreover, effect of shear significantly affect strength, stiffness and displacement response of the pier. In all, It is believed that the present analytical model and scheme enable a healthy evaluation of strength, stiffness and displacement capacities of a RC bridge pier being damaged and repaired.

  • PDF

Numerical FEM assessment of soil-pile system in liquefiable soil under earthquake loading including soil-pile interaction

  • Ebadi-Jamkhaneh, Mehdi;Homaioon-Ebrahimi, Amir;Kontoni, Denise-Penelope N.;Shokri-Amiri, Maedeh
    • Geomechanics and Engineering
    • /
    • v.27 no.5
    • /
    • pp.465-479
    • /
    • 2021
  • One of the important causes of building and infrastructure failure, such as bridges on pile foundations, is the placement of the piles in liquefiable soil that can become unstable under seismic loads. Therefore, the overarching aim of this study is to investigate the seismic behavior of a soil-pile system in liquefiable soil using three-dimensional numerical FEM analysis, including soil-pile interaction. Effective parameters on concrete pile response, involving the pile diameter, pile length, soil type, and base acceleration, were considered in the framework of finite element non-linear dynamic analysis. The constitutive model of soil was considered as elasto-plastic kinematic-isotropic hardening. First, the finite element model was verified by comparing the variations on the pile response with the measured data from the centrifuge tests, and there was a strong agreement between the numerical and experimental results. Totally 64 non-linear time-history analyses were conducted, and the responses were investigated in terms of the lateral displacement of the pile, the effect of the base acceleration in the pile behavior, the bending moment distribution in the pile body, and the pore pressure. The numerical analysis results demonstrated that the relationship between the pile lateral displacement and the maximum base acceleration is non-linear. Furthermore, increasing the pile diameter results in an increase in the passive pressure of the soil. Also, piles with small and big diameters are subjected to yielding under bending and shear states, respectively. It is concluded that an effective stress-based ground response analysis should be conducted when there is a liquefaction condition in order to determine the maximum bending moment and shear force generated within the pile.

Finite Element Formulation Based on Enhanced First-order Shear Deformation Theory for Thermo-mechanical Analysis of Laminated Composite Structures (복합소재 적층 구조물에 대한 열-기계적 거동 예측을 위한 개선된 일차전단변형이론의 유한요소 정식화)

  • Jun-Sik Kim;Dae-Hyeon Na;Jang-Woo Han
    • Composites Research
    • /
    • v.36 no.2
    • /
    • pp.117-125
    • /
    • 2023
  • This paper proposes a new finite element formulation based on enhanced first-order shear deformation theory including the transverse normal strain effect via the mixed formulation (EFSDTM-TN) for the effective thermo-mechanical analysis of laminated composite structures. The main objective of the EFSDTM-TN is to provide an accurate and efficient solution in describing the thermo-mechanical behavior of laminated composite structures by systematically establishing the relationship between two independent fields (displacement and transverse stress fields) via the mixed formulation. Another key feature is to consider the thermal strain effect without additional unknown variables by introducing a refined transverse displacement field. In the finite element formulation, an eight-node isoparametric plate element is newly developed to implement the advantage of the EFSDTM-TN. Numerical solutions for the thermo-mechanical behavior of laminated composite structures are compared with those available in the open literature to demonstrate the numerical performance of the proposed finite element model.

A Study on the Structural Deformations in the Sedimentary Layer Resulted from Magma Intrusion (마그마관입에 의한 상부퇴적층의 변형에 관한연구)

  • Min, Kyung Duck;Kim, Won Young
    • Economic and Environmental Geology
    • /
    • v.10 no.1
    • /
    • pp.37-48
    • /
    • 1977
  • The earth's crust is unceasingly undergoing deformations because of the forces acting upon it. The relationship between the tectonic forces and the resulting deformations are found from the states of stresses in the earth's crust induced by these forces. The study has been attempted to analyze the deformations of the overlying sedimentary layers, which are deformed by the magma intrusion along its lower boundary. The elastic model is constructed to analyze the geologic structures, by means of the theory of elasticity, and then the appropriate boundary conditions are given. The solution of the Airy stress function which satisfies the given boundary conditions is derived from the analytic method. The internal stress distributions of the deformed elastic model layer are portrayed by principal stress trajetories, and then the corresponding potential faults and joints systems are predicted from the Coulomb-Mohr failure criterion. The internal displacement distributions are shown by the calculated displacement components vectors, namely horizontal, vertical and net components. Results of the numerical calculations show the developments of some geologic structures as follows; (1) one set of shear joints and or two sets of shear joints which are oppisite directions, and one set of extension joints parallel to the ${\sigma}_1$ direction, (2) one set of high angle thrusts and normal faults, (3) symmetric fold; both limbs are dipping in opposite direction with low angle. The field work at the Wall-A San area, located near Jinju City, in southern Korea, had accomplished to compare the field structures with the predicted ones. The results of the comparison exhibits the developments of joint and fault systems satisfactorily consistent with each others. But the area does not show any type of folding, in spite of the intrusion of a granodiorite massif, this fact is one of the important features of the whole Kyungsang sedimentary basins of Mesozoic age distributed at the south-eastern parts of Korea. For this reason, it is thought that the magma intrusion had occurred with extremly low pressure. The geologic structures have been modified by the erosion and weathering throughout the geologic time, and the conditions of the sedimentary layers (width, thickness and radius of magma) are not the same as before, being intruded by the magma. To enlighten this, it is preferable to study these geologic structures with analyses of various types of rheological models.

  • PDF