• 제목/요약/키워드: Shear strength of masonry

검색결과 62건 처리시간 0.023초

In-plane seismic performance of masonry wall retrofitted with prestressed steel-bar truss

  • Hwang, Seung-Hyeon;Kim, Sanghee;Yang, Keun-Hyeok
    • Earthquakes and Structures
    • /
    • 제19권6호
    • /
    • pp.459-469
    • /
    • 2020
  • An external prestressed steel-bar truss unit was developed as a new strengthening technology to enhance the seismic performance of an in-plane masonry wall structure while taking advantage of the benefits of a prestressed system. The presented method consists of six steel bars: two prestressed vertical bars to introduce a prestressing force on the masonry wall, two diagonal bars to resist shear deformation, and two horizontal bars to maintain the configuration. To evaluate the effects of this new technique, four full-scale specimens, including a control specimen, were tested under combined loadings that included constant-gravity axial loads and cyclic lateral loads. The experimental results were analyzed in terms of the shear strength, initial stiffness, dissipated energy, and strain history. The efficiency of the external prestressed steel-bar truss unit was validated. In particular, a retrofitted specimen with an axial load level of 0.024 exhibited a more stable post behavior and higher energy dissipation than a control specimen with an observed complete sliding failure. The four vertical bars of the adjacent retrofitting units created a virtual column, and their strain values did not change until they reached the peak shear strength. The shear capacity of the masonry wall structure with external prestressed steel-bar truss units could be predicted using the model suggested by Yang et al.

주기하중을 받는 비보강 조적벽체의 강체회전거동 (Rocking Behavior of Unreinforced Masonry Walls Under Cyclic Load)

  • 엄태성;김진우;김선웅;김재환;한주연;최호
    • 한국지진공학회논문집
    • /
    • 제27권1호
    • /
    • pp.49-57
    • /
    • 2023
  • This study investigated the rocking behavior of unreinforced masonry walls and wall piers under cyclic loading. Based on the benchmark tests, the characteristics of load-deformation relations in masonry walls with rocking failure were captured, focusing on observed deformation modes. The rocking strengths of masonry walls (i.e., peak and residual strengths) were evaluated, and the effects of opening configurations on the masonry wall strength were examined. The deformation capacity of the rocking behavior and the hysteresis shape of the load-deformation relations were also identified. Based on the results, modeling approaches for the rocking behavior of masonry walls were discussed.

반복-횡력을 받는 조적벽 골조와 전단벽 골조의 내력 및 연성에 관한 실험적 연구 (Experimental Study of Strength and Ductility on Masonry Wall Frame and Shear Wall Frame Subjected to Cyclic Lateral Loading)

  • 이호;변상민;정환목;이택운
    • 한국공간구조학회논문집
    • /
    • 제13권2호
    • /
    • pp.83-91
    • /
    • 2013
  • The core aim of this dissertation is to empirically scrutinize a strength characteristic of beam-column frame subjected to the cyclic lateral load, a beam-column frame of un-reinforced masonry wall, and a shear wall frame. First and foremost, I embark upon making three prototypes vis-$\grave{a}$-vis this research. By conducting this process, I touch on an analysis of cyclic behavior and a damage characteristic of the beam-column frame, the beam-column frame of un-reinforced masonry wall, and the shear wall frame. What is more, through the previous procedure, the next part delves into the exact stress transfer path and the destructive mechanism to examine how much and how strong the beam-column frame of un-reinforced Masonry Wall does have a resistance capacity against earthquake in all the architecture constructed by the above-mentioned frame, as well as school buildings. In addition to the three prototypes, two more experimental models, a beam-column frame and shear wall frame, are used to compare with the beam-column frame of un-reinforced masonry wall. Lastly, the dissertation will suggest some solutions to improve the resistance capacity against earthquake regarding all constructions built with non bearing wall following having examining precisely all the analysis with regard to not only behavior properties and the damage mechanism of the beam-column frame and the beam-column frame of un-reinforced Masonry Wall but also the resistance capacity against earthquake of non bearing wall and school buildings.

Experimental investigation of infilled r/c frames with eccentric openings

  • Kakaletsis, D.;Karayannis, C.
    • Structural Engineering and Mechanics
    • /
    • 제26권3호
    • /
    • pp.231-250
    • /
    • 2007
  • The influence of masonry infills with eccentric openings on the seismic performance of reinforced concrete (r/c) frames that were designed in accordance with current code provisions are investigated. Eight 1/3-scale, single-story, single-bay frame specimens were tested under cyclic horizontal loading up to a drift level of 4%. In all examined cases the shear strength of columns was higher than the cracking shear strength of solid infill. The parameters investigated include the shape and the location of the opening. Assessment of the behavior of the frames is also attempted, based on the observed failure modes, strength, stiffness, ductility, energy dissipation capacity and degradation from cycling loading. Based on these results there can be deduced that masonry infills with eccentrically located openings has been proven to be beneficial to the seismic capacity of the bare r/c frames in terms of strength, stiffness, ductility and energy dissipation. The location of the opening must be as near to the edge of the infill as possible in order to provide an improvement in the performance of the infilled frame.

Ultimate shear strength prediction model for unreinforced masonry retrofitted externally with textile reinforced mortar

  • Thomoglou, Athanasia K.;Rousakis, Theodoros C.;Achillopoulou, Dimitra V.;Karabinis, Athanasios I.
    • Earthquakes and Structures
    • /
    • 제19권6호
    • /
    • pp.411-425
    • /
    • 2020
  • Unreinforced masonry (URM) walls present low shear strength and are prone to brittle failure when subjected to inplane seismic overloads. This paper discusses the shear strengthening of URM walls with Textile Reinforced Mortar (TRM) jackets. The available literature is thoroughly reviewed and an extended database is developed including available brick, concrete and stone URM walls retrofitted and subjected to shear tests to assess their strength. Further, the experimental results of the database are compared against the available shear strength design models from ACI 549.4R-13, CNR DT 215 2018, CNR DT 200 R1/2013, Eurocode 6 and Eurocode 8 guidelines as well as Triantafillou and Antonopoulos 2000, Triantafillou 1998, Triantafillou 2016. The performance of the available models is investigated and the prediction average absolute error (AAE) is as high as 40%. A new model is proposed that takes into account the additional contribution of the reinforcing mortar layer of the TRM jacket that is usually neglected. Further, the approach identifies the plethora of different block materials, joint mortars and TRM mortars and grids and introduces rational calibration of their variable contributions on the shear strength. The proposed model provides more accurate shear strength predictions than the existing models for all different types of the URM substrates, with a low AAE equal to 22.95%.

Shear behaviour of Autoclaved Aerated Concrete (AAC) masonry walls with and without openings strengthened with welded wire mesh

  • Wanraplang Warlarpih;Comingstarful Marthong
    • Structural Engineering and Mechanics
    • /
    • 제87권5호
    • /
    • pp.487-498
    • /
    • 2023
  • Unreinforced masonry (URM) buildings are extensively adopted in many of the growing nations, particularly in India. Window or door openings are required for architectural or functional reasons, which pose a threat to the building's safety. The past earthquakes have shown that the seismic capability of these structures was very weak. Strengthening these unreinforced masonry walls using welded wire mesh (WWM) is one of the most commonly and economical methods. The present experimental study investigates the impact of openings on the shear behaviour of URM walls and the effectiveness of WWM in enhancing the shear performance of masonry wall. In the experimental program 16 specimens were cast, 8 unstrengthen and 8 strengthened specimens, under 8 unstrengthen and strengthened specimens, every 2 specimens had 0%, 5%, 10%, and 15% openings and all these walls were tested under diagonal compression. The results show that the shear carrying capacity reduces as the opening percentage increases. However, strengthening the URM specimens using WWM significantly improves the peak load, shear strength, ductility, stiffness, and energy dissipation. Furthermore, the strengthening of the URM walls using WWM compensated the loss of wall capacity caused by the presence of the openings.

강섬유보강 모르타르 바름에 의한 콘크리트 조적 프리즘의 압축 및 사인장 강도 증진 효과 (Enhancement of Compressive and Shear Strength for Concrete Masonry Prisms with Steel Fiber-Reinforced Mortar Overlay)

  • 유지훈;명성진;박지훈
    • 한국지진공학회논문집
    • /
    • 제25권1호
    • /
    • pp.21-32
    • /
    • 2021
  • Concrete masonry prisms are strengthened with steel fiber-reinforced mortar (SFRM) overlay and tested for compressive and diagonal tension strength. Masonry prisms are produced in poor condition considering standard workmanship for masonry buildings in Korea. Amorphous steel fibers are adopted for SFRM, and appropriate mixing ratios of SFRM are derived considering constructability and strength. Masonry prisms are strengthened with different fiber volume ratios, while numerous strengthened faces and additional reinforcing meshes are produced for compression and diagonal tension tests. Compression and diagonal tension strength are increased by up to 122% and 856%, respectively, and the enhancement effect for diagonal tension strength was superior compared to compression strength. Finally, the test results and strength prediction equations based on existing literature and regression analysis are compared.

Experimental study of masonry infill reinforced concrete frames with and without corner openings

  • Khoshnoud, Hamid Reza;Marsono, Kadir
    • Structural Engineering and Mechanics
    • /
    • 제57권4호
    • /
    • pp.641-656
    • /
    • 2016
  • Reinforced concrete frame buildings with masonry infill walls are one of the most popular structural systems in the world. In most cases, the effects of masonry infill walls are not considered in structural models. The results of earthquakes show that infill walls have a significant effect on the seismic response of buildings. In some cases, the buildings collapsed as a result of the formation of a soft story. This study developed a simple method, called corner opening, by replacing the corner of infill walls with a very flexible material to enhance the structural behavior of walls. To evaluate the proposed method a series of experiments were conducted on masonry infill wall and reinforced concrete frames with and without corner openings. Two 1:4 scale masonry infill walls with and without corner openings were tested under diagonal tension or shear strength and two RC frames with full infill walls and with corner opening infill walls were tested under monotonic horizontal loading up to a drift level of 2.5%. The experimental results revealed that the proposed method reduced the strength of infill wall specimens but considerably enhanced the ductility of infill wall specimens in the diagonal tension test. Moreover, the corner opening in infill walls prevented the slid shear failure of the infill wall in RC frames with infill walls.

FRP로 보강한 비보강 조적 벽체의 전단강도 산정 (Evaluation of Shear Strength of Unreinforced Masonry Walls Retrofitted by Fiber Reinforced Polymer Sheet)

  • 배백일;윤효진;최창식;최현기
    • 콘크리트학회논문집
    • /
    • 제24권3호
    • /
    • pp.305-313
    • /
    • 2012
  • 비보강 조적조 건축물은 전세계적으로 기존의 건물 및 역사 건축물의 많은 부분을 차지하고 있다. 특히, 최근 지진이 전세계적으로 빈번하게 나타남에 따라 비보강 조적조 구조물에 대한 내진 보강 대책이 요구되고 있다. 현재 비보강 조적조의 보강방법으로는 숏크리트, ECC jacketing, FRPs(fiber reinforced polymer sheet) 등이 개발되어 사용되고 있다. 특히 많은 엔지니어들이 FRPs를 사용한 보강방법을 채택하는 경향이 보이는데 이는 숏크리트나 ECC jacketing과는 달리 벽체의 두께 확장에 따른 구조물 자중 증가 문제없이 비보강 조적조의 전단강도를 향상시킬 수 있기 때문이다. 그러나 비보강 조적 벽체의 복잡한 역학적 거동과 FRPs를 사용한 실험 데이터의 부족은 아직까지도 적절한 보강량을 산정하는데 어려움을 주고 있다. 이 연구는 비보강 조적조의 면내 거동을 확인하고 두 가지의 다른 특징을 가진 FRPs를 사용한 보강 효과에 대한 정보를 주기 위해 수행되었다. 실험체는 1970년대 한국에서 빈번하게 지어진 저층형 연립주택의 내벽을 대상으로 하고 있으며 별도의 내진 설계는 되어있지 않은 상태이다. 실험체의 형상비는 실제 상황을 반영하기 위해 1에 가깝게 설정되어 있다. 보강 재료로는 탄소섬유보강 시트와 하이브리드 시트를 사용하였으며 이들은 각각 다른 극한 강도와 탄성계수 및 극한 변형률을 보유하고 있다. 연구 결과 비보강 조적 벽체의 면내 전단력 저항 성능을 확인하였으며 FRPs가 사용된 내진 보강 방안의 특성을 분석할 수 있었다. 또한 FRPs를 사용한 보의 전단보강 방법에 착안하여 비보강 조적조에 대한 FRPs의 보강 설계안을 도출할 수 있었다.

유리섬유로 보강한 조적벽체의 전단내력식 설정에 관한 연구 (Proposing the Shear Force Equation of GFRP Strengthened Masonry Wall)

  • 권기혁;이수철;정원철
    • 한국방재학회 논문집
    • /
    • 제7권1호통권24호
    • /
    • pp.1-9
    • /
    • 2007
  • 본 연구는 국내에 시공된 조적조 건축물의 특징을 반영한 조적벽체의 반복가력과 모의진동대 실험을 통해 얻어진 결과를 근거로 하여 유리섬유로 보강된 보강조적벽체의 전단내력식을 제안하는 것을 목적으로 한다. 실험결과, 개구부가 없는 조적벽체의 파괴를 지배하는 모드는 Rocking이였고, 개구부가 있는 경우는 개구부 주변에 균열이 집중되었다. 비보강 조적벽체의 전단내력식은 UBC에서 제시한 식이 실험과 가장 유사한 값을 보였다. 본 연구를 통해 제안되어지는 유리섬유 보강조적벽체의 전단내력식은 다음과 같다. $$V_n=0.02A_n{\sqrt{f'_m}}+0.022b_gh_g(1+2{\alpha})^3{\sqrt{f_g}}(N/mm^2)$$.