• Title/Summary/Keyword: Shear loading system

Search Result 234, Processing Time 0.023 seconds

Comparative study on dynamic analyses of non-classically damped linear systems

  • Greco, Annalisa;Santini, Adolfo
    • Structural Engineering and Mechanics
    • /
    • v.14 no.6
    • /
    • pp.679-698
    • /
    • 2002
  • In this paper some techniques for the dynamic analysis of non-classically damped linear systems are reviewed and compared. All these methods are based on a transformation of the governing equations using a basis of complex or real vectors. Complex and real vector bases are presented and compared. The complex vector basis is represented by the eigenvectors of the complex eigenproblem obtained considering the non-classical damping matrix of the system. The real vector basis is a set of Ritz vectors derived either as the undamped normal modes of vibration of the system, or by the load dependent vector algorithm (Lanczos vectors). In this latter case the vector basis includes the static correction concept. The rate of convergence of these bases, with reference to a parametric structural system subjected to a fixed spatial distribution of forces, is evaluated. To this aim two error norms are considered, the first based on the spatial distribution of the load and the second on the shear force at the base due to impulsive loading. It is shown that both error norms point out that the rate of convergence is strongly influenced by the spatial distribution of the applied forces.

Assessment of velocity-acceleration feedback in optimal control of smart piezoelectric beams

  • Beheshti-Aval, S.B.;Lezgy-Nazargah, M.
    • Smart Structures and Systems
    • /
    • v.6 no.8
    • /
    • pp.921-938
    • /
    • 2010
  • Most of studies on control of beams containing piezoelectric sensors and actuators have been based on linear quadratic regulator (LQR) with state feedback or output feedback law. The aim of this study is to develop velocity-acceleration feedback law in the optimal control of smart piezoelectric beams. A new controller which is an optimal control system with velocity-acceleration feedback is presented. In finite element modeling of the beam, the variation of mechanical displacement through the thickness is modeled by a sinus model that ensures inter-laminar continuity of shear stress at the layer interfaces as well as the boundary conditions on the upper and lower surfaces of the beam. In addition to mechanical degrees of freedom, one electric potential degree of freedom is considered for each piezoelectric element layer. The efficiency of this control strategy is evaluated by applying to an aluminum cantilever beam under different loading conditions. Numerical simulations show that this new control scheme is almost as efficient as an optimal control system with state feedback. However, inclusion of the acceleration in the control algorithm increases practical value of a system due to easier and more accurate measurement of accelerations.

Incompatible deformation and damage evolution of mixed strata specimens containing a circular hole

  • Yang, Shuo;Li, Yuanhai;Chen, Miao;Liu, Jinshan
    • Geomechanics and Engineering
    • /
    • v.20 no.5
    • /
    • pp.461-474
    • /
    • 2020
  • Analysing the incompatible deformation and damage evolution around the tunnels in mixed strata is significant for evaluating the tunnel stability, as well as the interaction between the support system and the surrounding rock mass. To investigate this issue, confined compression tests were conducted on upper-soft and lower-hard strata specimens containing a circular hole using a rock testing system, the physical mechanical properties were then investigated. Then, the incompatible deformation and failure modes of the specimens were analysed based on the digital speckle correlation method (DSCM) and Acoustic Emission (AE) data. Finally, numerical simulations were conducted to explore the damage evolution of the mixed strata. The results indicate that at low inclination angles, the deformation and v-shaped notches inside the hole are controlled by the structure plane. Progressive spalling failure occurs at the sidewalls along the structure plane in soft rock. But the transmission of the loading force between the soft rock and hard rock are different in local. At high inclination angles, v-shaped notches are approximately perpendicular to the structure plane, and the soft and hard rock bear common loads. Incompatible deformation between the soft rock and hard rock controls the failure process. At inclination angles of 0°, 30° and 90°, incompatible deformations are closely related to rock damage. At 60°, incompatible deformations and rock damage are discordant due that the soft rock and hard rock alternately bears the major loads during the failure process. The failure trend and modes of the numerical results agree very well with those observed in the experimental results. As the inclination angles increase, the proportion of the shear or tensile damage exhibits a nonlinear increase or decrease, suggesting that the inclination angle of mixed strata may promote shear damage and restrain tensile damage.

Retrofitting Effects and Structural Behavior of RC Columns Strengthened with X-Bracing Using Carbon Fiber Anchor (탄소섬유 앵커 X-브레이싱으로 보강된 철근콘크리트 기둥의 구조거동 및 내진보강 효과)

  • Sim, Jong-Sung;Lee, Kang-Seok;Kwon, Hyuck-Woo;Kim, Hyun-Joong
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.323-331
    • /
    • 2012
  • This paper presents a new strengthening method on concrete column against seismic loads for structural performance tests. An X-bracing using high performance carbon fiber threads called the "Carbon fiber anchor X-bracing system" is used to connect RC frames internally. The carbon fiber sheet is wrapped around the column to fix the top and bottom of the column after Super anchor was installed by drilling hole on the column. The structural performance was evaluated experimentally and analytically. Two types of columns specimens were made; flexure fracture scaled model and shear fracture scaled model. For the performance evaluation, cyclic loading tests were conducted on moment and shear resisting columns with and without X bracing. Test results confirmed that the bracing system installed on RC columns enhanced the strength capacity and provided adequate ductility.

Structural Performance Evaluation of Prestressed Concrete Trapezoidal Girders Using Socket Joint System (소켓연결 방식을 이용한 프리스트레스트 콘크리트 제형 거더의 구조성능 평가)

  • Shim, Won-Bo;Min, Kyung-Hwan;Choi, Hong-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.11
    • /
    • pp.7244-7249
    • /
    • 2015
  • In this study, in order to asses the structural performance of trapezoidal PSC girder using a socket joint system and it is possible to calculate the optimized cross-section of the web element tests were carried out for each specimens. we conducted a socket joint performance test, web bending and shear performance tests and all tests were performed at 4 point loading method. The initial crack load of socket joint specimen was significantly lower than the reference specimen but post peak behavior was no significant differences. And the length of the loop joint of the reinforcing bars had no significant effect on the maximum load. As a web shear tests, to obtain a maximum load of the specimen has a prestressing rod reinforced at tension side. As a web flexural tests, to obtain higher diagonal cracking load in specimen of reinforced using prestressing rod than reference specimen.

Residual drift analyses of realistic self-centering concrete wall systems

  • Henry, Richard S.;Sritharan, Sri;Ingham, Jason M.
    • Earthquakes and Structures
    • /
    • v.10 no.2
    • /
    • pp.409-428
    • /
    • 2016
  • To realise the full benefits of a self-centering seismic resilient system, the designer must ensure that the entire structure does indeed re-center following an earthquake. The idealised flag-shaped hysteresis response that is often used to define the cyclic behaviour of self-centering concrete systems seldom exists and the residual drift of a building subjected to an earthquake is dependent on the realistic cyclic hysteresis response as well as the dynamic loading history. Current methods that are used to ensure that re-centering is achieved during the design of self-centering concrete systems are presented, and a series of cyclic analyses are used to demonstrate the flaws in these current procedures, even when idealised hysteresis models were used. Furthermore, results are presented for 350 time-history analyses that were performed to investigate the expected residual drift of an example self-centering concrete wall system during an earthquake. Based upon the results of these time-history analyses it was concluded that due to dynamic shake-down the residual drifts at the conclusion of the ground motion were significantly less than the maximum possible residual drifts that were observed from the cyclic hysteresis response, and were below acceptable residual drift performance limits established for seismic resilient structures. To estimate the effect of the dynamic shakedown, a residual drift ratio was defined that can be implemented during the design process to ensure that residual drift performance targets are achieved for self-centering concrete wall systems.

Thermal Stability Analysis of a Flexible Beam Spacecraft Appendage (위성체 유연 보 구조물의 열 안정성 해석)

  • 윤일성;송오섭
    • Composites Research
    • /
    • v.15 no.3
    • /
    • pp.18-29
    • /
    • 2002
  • The bending vibration and thermal flutter instability of spacecraft booms modeled as circular thin-walled beams of closed cross-section and subjected to thermal radiation loading is investigated in this paper. The thin-walled beam model incorporates a number of nonclassical effects of transverse shear, primary and secondary warping, rotary inertia and anisotropy of constituent materials. Thermally induced vibration response characteristics of a composite thin walled beam exhibiting the circumferantially uniform system(CUS) configuration are exploited in connection with the structural flapwise bending-lagwise bending coupling resulting from directional properties of fiber reinforced composite materials and from ply stacking sequence. The numerical simulations display deflection time-history as a function of the ply-angle of fibers of the composite materials, damping factor, incident angle of solar heat flux, as well as the boundary of the thermal flutter instability domain. The adaptive control are provided by a system of piezoelectric devices whose sensing and actuating functions are combined and that are bonded or embedded into the host structure.

Scaled Test on the Behavior of the Toe of Drilled Shaft on Rock Mass (암반에 근입된 말뚝의 선단 거동 특성에 관한 축소모형시험 연구)

  • Park, Woan-Suh;Choi, Se-Keun;Jeon, Seok-Won;Han, Yong-Hee
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1166-1171
    • /
    • 2008
  • Despite of the increasing number of the application of drilled shaft piles in construction site, most studies on pile capacity have been focused on the side shear resistance. But it is common that the drilled shaft is socketed on the rock so as to use its bearing resistance. The prediction of the end movement and characteristics of the bearing capacity of the pile is great important as well. Therefore, a series of scaled model tests were carried out in order to study the characteristics of the bearing capacity on rock mass. The material of the test block was cement mortar which was mixed with sand, cement and water, and the size of a test block size was $240{\times}240{\times}240mm$. The axial load was applied by a miniaturized pile of 45mm in diameter and flat jacks and steel plate were used for confinement to simulate the real underground loading conditions. The relation of load-displacement was measured in various different conditions of rock mass such as strength, discontinuity of the rock mass and in-situ stress, so q-w curves of the end of the pile were presented for each condition.

  • PDF

Nonlinear modeling parameters of RC coupling beams in a coupled wall system

  • Gwon, Seongwoo;Shin, Myoungsu;Pimentel, Benjamin;Lee, Deokjung
    • Earthquakes and Structures
    • /
    • v.7 no.5
    • /
    • pp.817-842
    • /
    • 2014
  • ASCE/SEI 41-13 provides modeling parameters and numerical acceptance criteria for various types of members that are useful for evaluating the seismic performance of reinforced concrete (RC) building structures. To accurately evaluate the global performance of a coupled wall system, it is crucial to first properly define the component behaviors (i.e., force-displacement relationships of shear walls and coupling beams). However, only a few studies have investigated on the modeling of RC coupling beams subjected to earthquake loading to date. The main objective of this study is to assess the reliability of ASCE 41-13 modeling parameters specified for RC coupling beams with various design details, based on a database compiling almost all coupling beam tests available worldwide. Several recently developed coupling beam models are also reviewed. Finally, a rational method is proposed for determining the chord yield rotation of RC coupling beams.

An Experimental Study on Seismic Performance of Replaceable Steel Brace System with Sliding Slot (교체 가능한 강재 브레이스 시스템의 슬라이딩 슬롯 길이에 따른 내진성능에 관한 실험적 연구)

  • Kim Yoon Sung;Ro Kyong Min;Kim Min Sook;Lee Young Hak
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.4
    • /
    • pp.35-42
    • /
    • 2023
  • The purpose of this study is to experimentally analyze the seismic performance of column with RSB (Replaceable Steel Brace), a steel brace system with slot length as a variable. To evaluate the seismic performance of the RSB, three specimens were manufactured and subjected to cyclic loading tests. The length of the sliding slots were considered to be 5 mm and 10mm to enable the brace to resist the load from the initiation of flexural crack and shear crack. As a result of the test, the specimen reinforced with the RSB showed improved maximun load and effective stiffness, and energy dissipation capacity compared to the non-reinforced specimens. The specimens with 5mm sliding slot showed little difference in test result compared to the specimen with a 10mm sliding slot, indicating that the length of sliding slot has little influence on the effectiveness of RSB.