• Title/Summary/Keyword: Shear buckling

Search Result 631, Processing Time 0.026 seconds

Shear Design of Trapezoidally Corrugated Steel Webs (제형 파형강판 복부판의 전단 설계)

  • Moon, Jiho;Yi, Jongwon;Choi, Byung-Ho;Lee, Hak-Eun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4A
    • /
    • pp.497-505
    • /
    • 2008
  • Corrugated steel webs resist only shear force because of the accordion effects. The shear force in the web can cause three different buckling mode: local, global, and interactive shear buckling modes. The shear behavior of the corrugated steel webs have been investigated by several researchers. However, shear buckling behavior of the corrugated webs are not clearly explained yet. And, it lead the conservative design. This paper presents shear strength of trapezoidally corrugated steel webs. A series of the tests were also conducted to verified proposed shear strength. Firstly, local, global, and interactive shear buckling equations provided by previous researchers were rearranged as a simple form considering the profiles of the existing bridges with corrugated steel webs. And, global and interactive shear buckling coefficient, and shear buckling parameter for corrugated webs were suggested in this study. Inelastic buckling strength can be determined from buckling curves based on the proposed shear buckling parameter. From the test results of this study and those of previous researchers, it can be found that suggested shear strength provides good estimation of those of trapezoidally corrugated steel webs.

Analysis on the Elastic Shear Buckling Characteristics of Corrugated Steel Plate in Accordance with Corrugation Shape (형상에 따른 주름강판의 탄성전단좌굴 특성 및 경향성 분석 연구)

  • Shon, Su-Deok;Yoo, Mi-Na;Lee, Seung-Jae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.6
    • /
    • pp.11-20
    • /
    • 2014
  • This paper aims at comparing and analyzing shear buckling characteristics between sinusoidal corrugation shape and trapezoidal one. For this, I adopted the equal-length trapezoidal corrugation and sinusoidal one for the analytical models, and analyzed their shear buckling characteristics through linear buckling analysis and on its theory. Generally, the shear buckling shapes of corrugated steel plates are classified into local buckling, global buckling, and interactive buckling from the two buckling modes. Sinusoidal corrugation shape, unlike trapezoidal corrugation, does not have flat sides, which causes another tendency in shear buckling mode. Especially, the changes and different aspects of shear buckling on the boundary between local buckling and global buckling appear in different corrugation shapes. According to the analysis results, interactive buckling mode appeared on the boundary of local buckling and global bucking in trapezoidal corrugation. However, in the case of corrugated steel plates with sinusoidal configuration, interactive buckling mode appeared in the part where global bucking takes place. Besides, trapezoidal shapes are of advantages on shear buckling resistance in the local buckling section, and so are sinusoidal shapes in the global buckling section.

Simplified method for prediction of elastic-plastic buckling strength of web-post panels in castellated steel beams

  • Liu, Mei;Guo, Kangrui;Wang, Peijun;Lou, Chao;Zhang, Yue
    • Steel and Composite Structures
    • /
    • v.25 no.6
    • /
    • pp.671-684
    • /
    • 2017
  • Elastic-plastic shear buckling behaviors of the web-post in a Castellated Steel Beam (CSB) with hexagonal web openings under vertical shear force were investigated further using Finite Element Model (FEM) based on a sub-model, which took the upper part of the web-post under horizontal shear force to represent the whole web-post under vertical shear force. A simplified design method for the web-post elastic-plastic shear buckling strength was proposed based on simulation results of the sub-model. Proper boundary conditions were applied to the sub-model to assure that its behaviors were identical to those of the whole web-post. The equation to calculate the thin plate elastic shear buckling strength was adopted as the basic form to build the design equation for elastic-plastic buckling strength of the sub-model. Parameters that might affect the elastic-plastic shear buckling strength of the whole web-post were studied. After obtaining the vertical shear buckling strength of a sub-model through FEM, the shear buckling coefficient k can be obtained through the back analysis. A practical calculation method for k was proposed through curving fitting the parameter study results. The elastic-plastic shear buckling strength of the web-post calculated using the proposed shear buckling coefficient k agreed well with that obtained from the FEM and test results. And it was more precise than those obtained from EC3 based on the strut model.

Elastic Interactive Shear Buckling Behavior of Trapezoidally Corrugated Steel Webs (제형파형강판 복부판의 탄성 연성전단좌굴 거동)

  • Yi, Jong Won;Gill, Heung Bae;Lee, Hak Eun
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.6 s.79
    • /
    • pp.707-715
    • /
    • 2005
  • Corrugated webs have been used for composite prestressed concrete box girder bridges. Innovative steel plate girders using corrugated webs have been proposed. It has been found that analytical and experimental researches conducted to determine the strength of trapezoidally corrugated webs can fail with respect to three different buckling modes: local, global, and interactive shear buckling. Shear buckling capacity equations based on classical and orthotropic plate buckling theories have been proposed,but these equations show some differences. In this paper, geometric parameters that influence interactive shear buckling behavior with interaction effects are identified via extensive bifurcation buckling analysis using the finite element meth.

Shear buckling analysis of cross-ply laminated plates resting on Pasternak foundation

  • Topal, Umut;Nazarimofrad, Ebrahim;Kholerdi, Seyed Ebrahim Sadat
    • Structural Engineering and Mechanics
    • /
    • v.68 no.3
    • /
    • pp.369-375
    • /
    • 2018
  • This paper presents the shear buckling analysis of symmetrically laminated cross-ply plates resting on Pasternak foundation under pure in-plane uniform shear load. The classical laminated plate theory is used for the shear buckling analysis of laminated plates. The Rayleigh-Ritz method with novel plate shape functions is proposed to solve the differential equations and a computer programming is developed to obtain the shear buckling loads. Finally, the effects of the plate aspect ratios, boundary conditions, rotational restraint stiffness, translational restraint stiffness, thickness ratios, modulus ratios and foundation parameters on the shear buckling of the laminated plates are investigated.

Evaluation of unilateral buckling of steel plates in composite concrete-steel shear walls

  • Shamsedin Hashemi;Samaneh Ramezani
    • Structural Engineering and Mechanics
    • /
    • v.88 no.2
    • /
    • pp.129-140
    • /
    • 2023
  • To increase the stiffness and strength of a reinforced concrete shear wall, steel plates are bolted to the sides of the wall. The general behavior of a composite concrete-steel shear wall is dependent on the buckling of the steel plates that should be prevented. In this paper, the unilateral buckling of steel plates of a composite shear wall is studied using the Rayleigh-Ritz method. To model the unilateral buckling of steel plate, the restraining concrete wall is described as an elastic foundation with high stiffness in compression and zero stiffness in tension. To consider the effect of bolt connections on the plate's buckling, a constrained optimization problem is solved by using Lagrange multipliers method. This process is used to obtain the critical elastic local buckling coefficients of unilaterally-restrained steel plates with various numbers of bolts, subjected to pure compression, bending and shear loading, and the interaction between them. Using these results, the spacing between shear bolts in composite steel plate shear walls is estimated and compared with the results of the AISC seismic provisions (2016). The results show that the AISC seismic provisions(2016) are overly conservative in obtaining the spacing between shear bolts.

Experimental and analytical study on the shear strength of corrugated web steel beams

  • Barakat, Samer;Leblouba, Moussa
    • Steel and Composite Structures
    • /
    • v.28 no.2
    • /
    • pp.251-266
    • /
    • 2018
  • Compared to conventional flat web I-beams, the prediction of shear buckling stress of corrugated web steel beams (CWSBs) is not straightforward. But the CWSBs combined advantages of lightweight large spans with low-depth high load-bearing capacities justify dealing with such difficulties. This work investigates experimentally and analytically the shear strength of trapezoidal CWSBs. A set of large scale CWSBs are manufactured and tested to failure in shear. The results are compared with widely accepted CWSBs shear strength prediction models. Confirmed by the experimental results, the linear buckling analyses of trapezoidal corrugated webs demonstrated that the local shear buckling occurs only in the flat plane folds of the web, while the global shear buckling occurs over multiple folds of the web. New analytical prediction model accounting for the interaction between the local and global shear buckling of CWSBs is proposed. Experimental results from the current work and previous studies are compared with the proposed analytical prediction model. The predictions of the proposed model are significantly better than all other studied models. In light of the dispersion of test data, accuracy, consistency, and economical aspects of the prediction models, the authors recommend their proposed model for the design of CWSBs over the rest of the models.

Buckling of symmetrically laminated plates using nth-order shear deformation theory with curvature effects

  • Becheri, Tawfiq;Amara, Khaled;Bouazza, Mokhtar;Benseddiq, Noureddine
    • Steel and Composite Structures
    • /
    • v.21 no.6
    • /
    • pp.1347-1368
    • /
    • 2016
  • In this article, an exact analytical solution for mechanical buckling analysis of symmetrically cross-ply laminated plates including curvature effects is presented. The equilibrium equations are derived according to the refined nth-order shear deformation theory. The present refined nth-order shear deformation theory is based on assumption that the in-plane and transverse displacements consist of bending and shear components, in which the bending components do not contribute toward shear forces and, likewise, the shear components do not contribute toward bending moments The most interesting feature of this theory is that it accounts for a parabolic variation of the transverse shear strains across the thickness and satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. Buckling of orthotropic laminates subjected to biaxial inplane is investigated. Using the Navier solution method, the differential equations have been solved analytically and the critical buckling loads presented in closed-form solutions. The sensitivity of critical buckling loads to the effects of curvature terms and other factors has been examined. The analysis is validated by comparing results with those in the literature.

Elastic Shear Buckling of Curved Web Panels (강곡선 1형보 복부판의 탄성 전단좌굴)

  • 김재석;김종헌;강영종;한택희
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.2
    • /
    • pp.95-104
    • /
    • 2004
  • The horizontally curved bridges have been used to connect bridges and roads. Until 1960s, they had been constructed with straight girders, called 'kinked girder bridges', which requires much cost and time-consuming construction of substructure. In case of using curved girders, practiced later, they would have many advantages such as reduction in the total construction cost and time, and ability to make aesthetic bridges. In designing plate girder bridges, it is necessary to determine the spacings between vertical stiffeners and the allowable shear stresses based on shear buckling capacity because it plays a key role in preventing the premature local shear buckling. Compared with the straight web, the critical shear buckling stresses of curved web panels vary with both aspect ratio and curvature coefficient. For designing curved web panels, a simplified formula and shear buckling coefficients were proposed by parametric models with F.E.M in this study.

Shear Buckling Behavior for Trapezoidal Corrugated Webs for Bridges (파형강판 복부의 전단좌굴거동 연구)

  • 이필구;윤태양;이학은;이승록
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.513-520
    • /
    • 2003
  • As a trapezoidal corrugated steel plate has the sufficient stiffness out of plane direction without shear stiffener or thick plate, a use in the web of bridge structure is on the increase. However, there are no domestic design guides for shear buckling strength of corrugated plates. Therefore, foreign design specifications are analyzed about application methods and a numerical parametric study is used to get the relationship of the shear strength and geometric boundary conditions for corrugated plates. Elastic buckling finite element analysis is executed through eigenvalue analysis using the eight nodes five freedoms thin shell element. Parameters such as the width and height of panel and the thickness and height of web, are determined considering the factors to influence on the buckling of corrugated plate. Accuracy of shear buckling analysis is evaluated with theory of foreign buckling equations.

  • PDF