• Title/Summary/Keyword: Shear band engineering

Search Result 80, Processing Time 0.023 seconds

Localized deformation in sands and glass beads subjected to plane strain compressions

  • Zhuang, Li;Nakata, Yukio;Lee, In-Mo
    • Geomechanics and Engineering
    • /
    • v.5 no.6
    • /
    • pp.499-517
    • /
    • 2013
  • In order to investigate shear behavior of granular materials due to excavation and associated unloading actions, load-controlled plane strain compression tests under decreasing confining pressure were performed under drained conditions and the results were compared with the conventional plane strain compression tests. Four types of granular material consisting of two quartz sands and two glass beads were used to investigate particle shape effects. It is clarified that macro stress-strain behavior is more easily influenced by stress level and stress path in sands than in glass beads. Development of localized deformation was analyzed using photogrammetry method. It was found that shear bands are generated before peak strength and shear band patterns vary during the whole shearing process. Under the same test condition, shear band thickness in the two sands was smaller than that in one type of glass beads even if the materials have almost the same mean particle size. Shear band thickness also decreased with increase of confining pressure regardless of particle shape or size. Local maximum shear strain inside shear band grew approximately linearly with global axial strain from onset of shear band to the end of softening. The growth rate is found related to shear band thickness. The wider shear band, the relatively lower the growth rate. Finally, observed shear band inclination angles were compared with classical Coulomb and Roscoe solutions and different results were found for sands and glass beads.

Understanding of the Shear Bands in Amorphous Metals

  • Park, Eun Soo
    • Applied Microscopy
    • /
    • v.45 no.2
    • /
    • pp.63-73
    • /
    • 2015
  • Shear banding is an evidence of plastic instability that localizes large shear strains in a relatively thin band when a material is plastically deformed. Shear bands have attracted much attention in amorphous metals, because shear bands are the key feature that controls the plastic deformation process. In this article, we review recent advances in understanding of the shear bands in amorphous metals regarding: dislocations versus shear bands, the formation of shear bands, hot versus cold shear bands, and property manipulation by shear band engineering. Although there are many key issues that remain puzzling, the understanding built-up from these approaches will provide a new insight for tailoring shear bands in amorphous metals, which potentially leads to unique property changes as well as improved mechanical properties. Indeed, this effort might open a new era to the future use of amorphous metals as a new menu of engineering materials.

Shear wave velocity of sands subject to large strain triaxial loading

  • Teachavorasinskun, Supot;Pongvithayapanu, Pulpong
    • Geomechanics and Engineering
    • /
    • v.11 no.5
    • /
    • pp.713-723
    • /
    • 2016
  • Shear wave velocities of three selected sandy soils subject to drained triaxial compression test were continuously measured using the bender elements. The shear wave velocity during isotropic compression, as widely recognized, increased as confining pressure increased and they were correlated well. However, during drained shearing, the mean effective stress could no further provide a suitable correlation. The shear wave velocity during this stage was almost constant with respect to the mean effective stress. The vertical stress was found to be more favorable at this stage (since confining stress was kept constant). When sample was attained its peak stress, the shear wave velocity reduced and deviated from the previously existed trend line. This was probably caused by the non-uniformity induced by the formation of shear band. Subsequently, void ratios computed based on external measurements could not provide reasonable fitting to the initial stage of post-peak shear wave velocity. At very large strain levels after shear band formation, the digital images revealed that sample may internally re-arrange itself to be in a more uniform loose stage. This final stage void ratio estimated based on the proposed correlation derived during pre-peak state was close to the value of the maximum void ratio.

A Study of Localization of the Adiabatic Shear Band with Numerical Method (단열전단변형에서 국부화에 대한 수치해석적 연구)

  • 이병섭
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.225-228
    • /
    • 1999
  • In a plastically deformed body the formation of a shear band is widely observed in the engineering materials during rapidly forming process for a thermally rate-sensitive material. The localized shear bond stems from evolution of a narrow region in which intensive plastic flow occurs. The shear band often plays as a precursor of the ductile fracture during a forming process. The objectives of this study are to investigate the localization behaivor by using numerical method thus predict the failure. In this work the implicit finite difference scheme is preformed due to the ease of covergence and the numerical stability. This study is based on an analysised material with hardening as well as thermally softening behavior which includes isotropy strain hardening. Furthermore this paper suggests that an anticipated and suggested a kinematic hardening constitutive equation be requried to predicte a more accurate strain level wherein a shear band occurs.

  • PDF

Understanding the Plasticity of Amorphous Alloys Via the Interpretation of Structural Evolution Inside a Shear Band (비정질 합금의 전단띠 내부 구조변화 해석을 통한 소성의 이해)

  • Lee, Chang-Myeon;Park, Kyoung-Won;Lee, Byeong-Joo;Shim, Jae-Hyeok;Lee, Jae-Chul
    • Korean Journal of Materials Research
    • /
    • v.19 no.5
    • /
    • pp.276-280
    • /
    • 2009
  • The effect of the initial packing structure on the plasticity of amorphous alloys was investigated by tracing the structural evolution of the amorphous solid inside a shear band. According to the molecular dynamics simulations, the structural evolution of the amorphous solids inside the shear band was more abrupt in the alloy with a higher initial packing density. Such a difference in the structural evolution within the shear band observed from the amorphous alloys with different initial packing density is believed to cause different degrees of shear localization, providing an answer to the fundamental question of why amorphous alloys show different plasticity. We clarify the structural origin of the plasticity of bulk amorphous alloys by exploring the microstructural aspects in view of the structural disordering, disorder-induced softening, and shear localization using molecular dynamics simulations based on the recently developed MEAM (modified embedded atom method) potential.

A Study of Localization with Material Properties Using Numerical Method (재료의 특징에 따른 국부화에 대한 수치해석적 연구)

  • 황두순;이병섭;이용성;윤수진;홍성인
    • Transactions of Materials Processing
    • /
    • v.9 no.4
    • /
    • pp.395-403
    • /
    • 2000
  • Formation of Shear Band under the adiabatic condition is widely observed In the engineering materials during rapidly forming process lot a thermally rate-dependent material. The shear band stems from evolution of a narrow region in which an intensive plastic flow occurs. The shear band often plays a role of a precursor of the ductile fracture during a forming process. The objective of this study is to investigate the localization behavior using numerical method. In this work, the implicit finite difference scheme is employed due to the ease of convergence and the numerical stability It is noted that physical and mechanical properties of materials determine how the shear band is formed and then localized. Material properties can be characterized with inertia number dissipation number and diffusion number. It is observed that the dimensionless numbers effect on localization. Using a parametric study, comparison was made between CRS-1018 steel with WHA (tungsten heavy alloy). The deformation behavior of material in this study include an isotropic hardening as well as thermal softening. Moreover, this study suggests that a kinematic hardening constitutive relation be required to predict a more accurate strain level at a shear band.

  • PDF

Rate of softening and sensitivity for weakly cemented sensitive clays

  • Park, DongSoon
    • Geomechanics and Engineering
    • /
    • v.10 no.6
    • /
    • pp.827-836
    • /
    • 2016
  • The rate of softening is an important factor to determine whether the failure occurs along localized shear band or in a more diffused manner. In this paper, strength loss and softening rate effect depending on sensitivity are investigated for weakly cemented clays, for both artificially cemented high plasticity San Francisco Bay Mud and low plasticity Yolo Loam. Destructuration and softening behavior for weakly cemented sensitive clays are demonstrated and discussed through multiple vane shear tests. Artificial sensitive clays are prepared in the laboratory for physical modeling or constitutive modeling using a small amount of cement (2 to 5%) with controlled initial water content and curing period. Through test results, shear band thickness is theoretically computed and the rate of softening is represented as a newly introduced parameter, ${\omega}_{80%}$. Consequently, it is found that the softening rate increases with sensitivity for weakly cemented sensitive clays. Increased softening rate represents faster strength loss to residual state and faster minimizing of shear band thickness. Uncemented clay has very low softening rate to 80% strength drop. Also, it is found that higher brittleness index ($I_b$) relatively shows faster softening rate. The result would be beneficial to study of physical modeling for sensitive clays in that artificially constructed high sensitivity (up to $S_t=23$) clay exhibits faster strain softening, which results in localized shear band failure once it is remolded.

The effect of strain on the electronic properties of MoS2 monolayers

  • Park, Soon-Dong;Kim, Sung Youb
    • Coupled systems mechanics
    • /
    • v.5 no.4
    • /
    • pp.305-314
    • /
    • 2016
  • We utilize first-principles calculations within density-functional theory to investigate the possibility of strain engineering in the tuning of the band structure of two-dimensional $MoS_2$. We find that the band structure of $MoS_2$ monolayers transits from direct to indirect when mechanical strain is applied. In addition, we discuss the change in the band gap energy and the critical stains for the direct-to-indirect transition under various strains such as uniaxial, biaxial, and pure shear. Biaxial strain causes a larger change, and the pure shear stain causes a small change in the electronic band structure of the $MoS_2$ monolayer. We observe that the change in the interaction between molecular orbitals due to the mechanical strain alters the band gap type and energy.

Effective Punching Shear and Moment Capacity of Flat Plate-Column Connection with Shear Reinforcements for Lateral Loading

  • Song, Jin-Kyu;Kim, Ju-Bum;Song, Ho-Bum;Song, Jeong-Won
    • International Journal of Concrete Structures and Materials
    • /
    • v.6 no.1
    • /
    • pp.19-29
    • /
    • 2012
  • In this study, three isolated interior flat slab-column connections that include three types of shear reinforcement details; stirrup, shear stud and shear band were tested under reversed cyclic lateral loading to observe the capacity of slab-column connections. These reinforced joints are 2/3 scale miniatures designed to have identical punching capacities. These experiments showed that the flexural failure mode appears in most specimens while the maximum unbalanced moment and energy absorbing capacity increases effectively, with the exception of an unreinforced standard specimen. Finally, the results of the experiments, as wel l as those of experiments previously carried out by researchers, are applied to the eccentricity shear stress model presented in ACI 318-08. The failure mode is therefore defined in this study by considering the upper limits for punching shear and unbalanced moment. In addition, an intensity factor is proposed for effective widths of slabs that carry an unbalanced moment delivered by bending.