• 제목/요약/키워드: Shear Strengthening effect

검색결과 145건 처리시간 0.021초

Renovation of steel beams using by imperfect functionally graded materials plate

  • Daouadji, Tahar Hassaine;Abderezak, Rabahi;Rabia, Benferhat;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • 제41권6호
    • /
    • pp.851-860
    • /
    • 2021
  • In this paper, a new approach of interface stress analysis in steel beam strengthened by porous FGM (Functionally Graded Materials) is presented to calculate the shear stress in the hybrid steel beam and loaded by a uniformly distributed load. The results show that there exists a high concentration of shear stress at the ends of the imperfect FGM, which might result in premature failure of the strengthening scheme at these locations. A parametric study has been conducted to investigate the sensitivity of interface behavior to parameters such as the rigidity of FGM plate (degree of homogeneity), the porosity index of FGM and the thickness of adhesive all were found to have a marked effect on the magnitude of maximum shear stress in the FGM member. we can conclude that the new approach is general in nature and may be applicable to all kinds of materials.

Out-of-plane behavior of perforated masonry walls strengthened with steel-bar truss system

  • Hwang, Seung-Hyeon;Mun, Ju-Hyun;Yang, Keun-Hyeok;Kim, Sanghee
    • Structural Engineering and Mechanics
    • /
    • 제83권6호
    • /
    • pp.799-810
    • /
    • 2022
  • This study investigated the effect of the strengthening efficiency of unbonded steel-bar truss system on the out-of-plane behavior of perforated masonry walls. Four full-scale unreinforced masonry (URM) walls with two different planes were prepared using the unbonded steel-bar truss system and a URM walls without strengthening. All masonry walls were tested under constant axial and cyclic lateral loads. The obtained test results indicated that the pinching effect in the out-plane behavior of masonry walls tends to decrease in the in- and out-of-plane strengthened URM walls using the unbonded steel-bar truss system with the higher prestressing force ratio (Rp) of vertical reinforcing bars in the unbonded steel-bar truss system, regardless of the perforated type of the masonry wall. Consequently, the highest maximum shear resistance and cumulative dissipated energy at peak load in the post-peak behavior were observed in the in- and out-plane strengthened URM walls with the highest Rp values, which are 2.7 and 6.0 times higher than those of URM. In particular, the strengthening efficiency of the unbonded steel-bar truss system was primarily attributed to the vertical prestressed steel-bars rather than the diagonal steel-bars, which indicates that the strains in the vertical prestressed steel-bars at the peak load were approximately 1.6 times higher than those in the diagonal steel-bars.

Shear strengthening effect by bonded GFRP strips and transverse steel on RC T-beams

  • Panda, K.C.;Bhattacharyya, S.K.;Barai, S.V.
    • Structural Engineering and Mechanics
    • /
    • 제47권1호
    • /
    • pp.75-98
    • /
    • 2013
  • This study focuses on shear strengthening performance of simply supported reinforced concrete (RC) T-beams bonded by glass fibre reinforced polymer (GFRP) strips in different configuration, orientations and transverse steel reinforcement in different spacing. Eighteen RC T-beams of 2.5 m span are tested. Nine beams are used as control beam. The stirrups are provided in three different spacing such as without stirrups and with stirrups at a spacing of 200 mm and 300 mm. Another nine beams are used as strengthened beams. GFRP strips are bonded in shear zone in U-shape and side shape with two types of orientation of the strip at $45^{\circ}$ and $90^{\circ}$ to the longitudinal axis of the beam for each type of stirrup spacing. The experimental result indicates that the beam strengthened with GFRP strips at $45^{\circ}$ orientation to the longitudinal axis of the beam are much more effective than $90^{\circ}$ orientation. Also as transverse steel increases, the effectiveness of the GFRP strips decreases.

A numerical study on the seismic behavior of a composite shear wall

  • Naseri, Reza;Behfarnia, Kiachehr
    • Computers and Concrete
    • /
    • 제22권3호
    • /
    • pp.279-289
    • /
    • 2018
  • Shear walls are one of the important structural elements for bearing loads imposed on buildings due to winds and earthquakes. Composite shear walls with high lateral resistance, and high energy dissipation capacity are considered as a lateral load system in such buildings. In this paper, a composite shear wall consisting of steel faceplates, infill concrete and tie bars which tied steel faceplates together, and concrete filled steel tubular (CFST) as boundary columns, was modeled numerically. Test results were compared with the existing experimental results in order to validate the proposed numerical model. Then, the effects of some parameters on the behavior of the composite shear wall were studied; so, the diameter and spacing of tie bars, thickness and compressive strength of infill concrete, thickness of steel faceplates, and the effect of strengthening the bottom region of the wall were considered. The seismic behavior of the modeled composite shear wall was evaluated in terms of stiffness, ductility, lateral strength, and energy dissipation capacity. The results of the study showed that the diameter of tie bars had a trivial effect on the performance of the composite shear wall, but increasing the tie bars spacing decreased ductility. Studying the effect of infill concrete thickness, concrete compressive strength, and thickness of steel faceplates also showed that the main role of infill concrete was to prevent buckling of steel faceplates. Also, by strengthening the bottom region of the wall, as long as the strengthened part did not provide a support performance for the upper part, the behavior of the composite shear wall was improved; otherwise, ductility of the wall could be reduced severely.

강섬유 계수 및 혼입률을 고려한 SFRC의 강도 및 변형 특성 (Characteristic Strength and Deformation of SFRC Considering Steel Fiber Factor and Volume fraction)

  • 이현호;이화진
    • 콘크리트학회논문집
    • /
    • 제16권6호
    • /
    • pp.759-766
    • /
    • 2004
  • 강섬유(steel fiber) 보강은 전단 강도와 같은 콘크리트 구조 부재의 많은 공학적 특성들을 현저히 향상시킨다. 본 연구는 구조 부재로의 실용적 사용을 위해 강섬유의 형상, 형상비, 혼입률, 강섬유 계수를 강도 특성 및 변형 특성의 수준으로 평가하였다. 기존 연구 및 본 연구의 재료 시험 결과들을 평가한 결과, 양단고리형 및 최대골재치수의 1.5배 이상되는 길이의 강섬유의 강도 보강효과가 우수한 것으로 판단된다. 또한 강도 및 변형 능력에 대한 상세 시험결과로부터, 형상비 75, 혼입률 $1.5\%$가 적절한 것으로 판단된다. 결론적으로 재료 성능 시험 결과들을 통계적로부터 추정한 결과, 강섬유 계수, 할렬인장강도, 휨강도가 SFRC의 주요한 특성인자로 판단된다.

FEM Analysis of RC Deep Beam Depending on Shear-Span Ratio

  • Lee, Yongtaeg;Kim, Seongeun;Kim, Seunghun
    • Architectural research
    • /
    • 제19권4호
    • /
    • pp.117-124
    • /
    • 2017
  • In this research, we carried out finite element analysis depends on the variations such as the strength of the main bar, concrete, shear-span ratio(a/d) and existence of shear reinforcing bar. Throughout the results of FEM analysis, we were able to figure out how each variation can effect on shear performance. As the strength of concrete increased, the maximum shear force enhancement effect of each specimen was evaluated. As a result, the shear strengthening effect was 51~97% for shear reinforced specimens, and 26~44% for non-shear reinforced specimens. As the yield strength of reinforcing bars increases, the shear reinforcement effect of the specimen the specimens without shear reinforcement were 3%~6% higher than those with shear reinforcement. Theoretical and analytical values were compared using the design equations obtained from the CEB code. Theoretical and analytical values were compared using the design equations obtained from the CEB code. As a result, the error rate was the highest at 3.64 in the S1.0-C0 series and the lowest at 1.46 in the S1.7-C1 series. Therefore, the design equation of the CEB code is estimated to underestimate the actual shear strength of deep beams that are not subjected to shear reinforcement.

볼트 체결된 와이어 로프를 이용한 RC 보의 전단보강에 대한 연구 (Study on the Shear Strengthening of Concrete Beams with Wire Rope Clamped by Bolts)

  • 김선영;송진규;이영욱;변항용
    • 콘크리트학회논문집
    • /
    • 제18권2호
    • /
    • pp.283-290
    • /
    • 2006
  • 본 연구는 와이어 로프를 이용한 비부착 보의 전단보강에 대한 실험에 대한 것이다. 전단보강 방법은 와이어 로프를 보 단면의 외부에 노출시킨 형태로 볼트와 너트로 기계적 정착을 하는 폐쇄형과 U자형이 있다. 폐쇄형 전단보강방법은 슬래브를 관통하여 와이어 로프로 보 단면을 둘러싼 후 슬래브 상부면에서 와이어 로프를 긴장 고정시키는 방법이곤 U자형 전단보강방법은 슬래브 하부면과 접하는 보 옆면의 정착장치에 U자형으로 와이어 로프를 설치하는 방법이다. 콘크리트 압축강도가 24MPa이고 전단스팬비(a/d)가 4인 실험체의 주요변수로 폐쇄형과 U자형에 대해서 보강 간격을 각각 150, 200, 250mm로 하였다. 실험 결과, 와이어 로프를 이용한 전단보강방법은 무보강 실험체에 대해서 폐쇄형과 U자형 보강실험체의 내력의 최대 증가비가 각각 2.88, 1.91배로 증가하였으며, 복부의 초기 사인장균열시의 처짐에 대한 최대전단강도에서의 처짐의 비로 정의한 연성도 크게 증가하였으며, 특히 폐쇄형의 전단보강의 경우 U자형 전단보강방법에 비해 내력 및 연성의 증가가 두드러졌다. 따라서 본 연구는 와이어 로프를 이용한 전단보강방법의 타당성을 평가하기 위한 실험으로서 중요한 가능성을 제시하며, 전단보강 설계 및 시공에 유용한 기초 자료로서 의의가 있다.

Shear strengthening of reinforced concrete beams with rectangular web openings by FRP Composites

  • Abdel-Kareem, Ahmed H.
    • Advances in concrete construction
    • /
    • 제2권4호
    • /
    • pp.281-300
    • /
    • 2014
  • This study presents the experimental results of twenty three reinforced concrete beams with rectangular web openings externally strengthened with Fiber Reinforced Polymers (FRP) composites bonded around openings. All tested beams had the same geometry and reinforcement details. At openings locations, the stirrups intercepted the openings were cut during fabrication of reinforcement cage to simulate the condition of inclusion of an opening in an existing beam. Several design parameters are considered including the opening dimensions and location in the shear zone, the wrapping configurations, and the amount and the type of the FRP composites in the vicinity of the openings. The wrapping configurations of FRP included: sheets, strips, U-shape strips, and U-shape strips with bundles of FRP strands placed at the top and sides of the beam forming a fan under the strips to achieve closed wrapping. The effect of these parameters on the failure modes, the ultimate load, and the beam stiffness were investigated. The shear contribution of FRP on the shear capacity of tested beams with web openings was estimated according to ACI Committee 440-08, Canadian Standards S6-06, and Khalifa et al. model and examined against the test results. A modification factor to account for the dimensions of opening chords was applied to the predicted gain in the shear capacity according to ACI 440-08 and CSA S6-06 for bonded Glass Fiber Reinforced Polymers (GFRP) around openings. The analytical results after incorporating the modification factor into the codes guidelines showed good agreement with the test results.

Behavior of Steel Fiber Reinforced Concrete Columns under Cyclic Loading

  • 장극관;이현호
    • 콘크리트학회논문집
    • /
    • 제16권3호
    • /
    • pp.415-423
    • /
    • 2004
  • To improve the brittle column behavior during seismic excitation, benefits of using steel fiber reinforced concrete in columns were investigated. For experimental study, eight specimens were used to evaluate the shear enhancement effect. The variables in this study were amount of shear reinforcement ratio (i.e., 0.26, 0.21 $\%$) and steel fiber volume fraction (i.e., 0.0, 1.0, 1.5, 2.0$\%$). The test results indicated that the maximum enhancement of shear capacity was shown in $1.5\%$ steel fiber content. In addition, to predict the maximum shear strength, equations of ACI 318-99, AIJ MB, NZS 3101, Hirosawa and Priestley were reviewed. From the parametric and regression study, modified Priestely equation was proposed by adding steel fiber effect.

Mechanical behavior of composite beam aluminum-sandwich honeycomb strengthened by imperfect FGM plate under thermo-mechanical loading

  • Bensatallah Tayeb;Rabahi Abderezak;Tahar Hassaine Daouadji
    • Coupled systems mechanics
    • /
    • 제13권2호
    • /
    • pp.133-151
    • /
    • 2024
  • In this paper, an improved theoretical interfacial stress analysis is presented for simply supported composite aluminum- sandwich honeycomb beam strengthened by imperfect FGM plateusing linear elastic theory. The adherend shear deformations have been included in the present theoretical analyses by assuming a linear shear stress through the thickness of the adherends, while all existing solutions neglect this effect. Remarkable effect of shear deformations of adherends has been noted in the results.It is shown that both the sliding and the shear stress at the interface are influenced by the material and geometry parameters of the composite beam. This new solution is intended for applicationto composite beams made of all kinds of materials bonded with a thin plate. Finally, numerical comparisons between the existing solutions and the present new solution enable a clear appreciation of the effects of various parameters.