• Title/Summary/Keyword: Shear Strength Parameters

Search Result 793, Processing Time 0.025 seconds

Effect of slag and bentonite on shear strength parameters of sandy soil

  • Sabbar, Ayad Salih;Chegenizadeh, Amin;Nikraz, Hamid
    • Geomechanics and Engineering
    • /
    • v.15 no.1
    • /
    • pp.659-668
    • /
    • 2018
  • A series of direct shear tests were implemented on three different types of specimens (i.e., clean Perth sand, sand containing 10, 20 and 30% bentonite, sand containing 1, 3 and 5% slag, and sand containing 10, 20 and 30% bentonite with increasing percentages of added slag (1%, 3% and 5%). This paper focuses on the shear stress characteristics of clean sand and sand mixtures. The samples were tested under different three normal stresses (100, 150 and 200 kPa) and three curing periods of no curing time, 7 and 14 days. It was observed that the shear stresses of clean sand and mixtures were increased with increasing normal stresses. In addition, the use of slag has improved the shear strength of the sand-slag mixtures; the shear stresses rose from 128.642 kPa in the clean sand at normal stress of 200 kPa to 146.89 kPa, 154 kPa and 161.14 kPa when sand was mixed with 1%, 3% and 5% slag respectively and tested at the same normal stress. Internal friction angle increased from $32.74^{\circ}$ in the clean sand to $34.87^{\circ}$, $37.12^{\circ}$ and $39.4^{\circ}$ when sand was mixed with 1%, 3% and 5% slag respectively and tested at 100, 150, and 200 kPa normal stresses. The cohesion of sand-bentonite mixtures increased from 3.34 kPa in 10% bentonite to 22.9 kPa, 70.6 kPa when sand was mixed with 20% and 30% bentonite respectively. All the mixtures of clean sand, different bentonite and slag contents showed different behaviour; some mixtures exhibited shear stress more than clean sand whereas others showed less than clean sand. The internal friction angle increased, and cohesion decreased with increasing curing time.

Effect of Coarse mateflal on the mechanical properties of Soil (조립재가 흙의 역학적 성질에 미치는 영향)

  • 윤충섭;김호일
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.31 no.3
    • /
    • pp.57-69
    • /
    • 1989
  • The study was carried out for the strength parameter of coarse grained Soil and slope stability analysis of earth dam. The test samples were taken fifteen kinds of soil from cohesive soil to coarse gravel. The degree of compaction of test samples for shear test and permeability test was chosen 95 percentage of maximum dry density. The results of this study are as follows ; 1.The maximum dry density(Yd) of coarse grained soil increase in proportion to coarse particles(P) with the relation of Y d= 1.609+0.0043P. 2.The coefficients of permeability(k) decrease by the increase of fine particles(n) with the relation of k=0.0426e-0 185n. 3.The cohesions of soil decrease by the increase of coarse particles, but internal friction angles are more increased in same condition. 4.The internal friction angles(${\Phi}$) decrease in inverse proportion to void ratio(e) with the relation of ${\Phi}$ = 73.068 - 69.268e. 5.The strength parameters( Ct ${\Phi}$t) by triaxial compression test are clearly smaller than that (Cd, ${\Phi}$d) by direct shear test in fine grained soil, but the differences between both parameters are a little in coarse grained soil.The relations of both parameters are as follows; Ct = O.544Cd + 0.04 ${\Phi}$t= 1.282${\Phi}$d-2306 6.In cohesive soil, the strength parameters( Cl ${\Phi}$l) by large size shear test apparatus are similar to the strength parameters(Cs , ${\Phi}$s) by small size shear test appratus, but Cs and ${\Phi}$s values are larger than Cl and ${\Phi}$l values from 10 percentage to 20 percentage in coarse grained soil. 7.The fine grained soil is inappropriate to high dam more than 20 meters and it must be taken coarse grained soil with high internal friction angle for high dam.

  • PDF

Prediction of ultimate shear strength and failure modes of R/C ledge beams using machine learning framework

  • Ahmed M. Yousef;Karim Abd El-Hady;Mohamed E. El-Madawy
    • Structural Monitoring and Maintenance
    • /
    • v.9 no.4
    • /
    • pp.337-357
    • /
    • 2022
  • The objective of this study is to present a data-driven machine learning (ML) framework for predicting ultimate shear strength and failure modes of reinforced concrete ledge beams. Experimental tests were collected on these beams with different loading, geometric and material properties. The database was analyzed using different ML algorithms including decision trees, discriminant analysis, support vector machine, logistic regression, nearest neighbors, naïve bayes, ensemble and artificial neural networks to identify the governing and critical parameters of reinforced concrete ledge beams. The results showed that ML framework can effectively identify the failure mode of these beams either web shear failure, flexural failure or ledge failure. ML framework can also derive equations for predicting the ultimate shear strength for each failure mode. A comparison of the ultimate shear strength of ledge failure was conducted between the experimental results and the results from the proposed equations and the design equations used by international codes. These comparisons indicated that the proposed ML equations predict the ultimate shear strength of reinforced concrete ledge beams better than the design equations of AASHTO LRFD-2020 or PCI-2020.

Shear strength estimation of RC deep beams using the ANN and strut-and-tie approaches

  • Yavuz, Gunnur
    • Structural Engineering and Mechanics
    • /
    • v.57 no.4
    • /
    • pp.657-680
    • /
    • 2016
  • Reinforced concrete (RC) deep beams are structural members that predominantly fail in shear. Therefore, determining the shear strength of these types of beams is very important. The strut-and-tie method is commonly used to design deep beams, and this method has been adopted in many building codes (ACI318-14, Eurocode 2-2004, CSA A23.3-2004). In this study, the efficiency of artificial neural networks (ANNs) in predicting the shear strength of RC deep beams is investigated as a different approach to the strut-and-tie method. An ANN model was developed using experimental data for 214 normal and high-strength concrete deep beams from an existing literature database. Seven different input parameters affecting the shear strength of the RC deep beams were selected to create the ANN structure. Each parameter was arranged as an input vector and a corresponding output vector that includes the shear strength of the RC deep beam. The ANN model was trained and tested using a multi-layered back-propagation method. The most convenient ANN algorithm was determined as trainGDX. Additionally, the results in the existing literature and the accuracy of the strut-and-tie model in ACI318-14 in predicting the shear strength of the RC deep beams were investigated using the same test data. The study shows that the ANN model provides acceptable predictions of the ultimate shear strength of RC deep beams (maximum $R^2{\approx}0.97$). Additionally, the ANN model is shown to provide more accurate predictions of the shear capacity than all the other computed methods in this study. The ACI318-14-STM method was very conservative, as expected. Moreover, the study shows that the proposed ANN model predicts the shear strengths of RC deep beams better than does the strut-and-tie model approaches.

Diagonal Tension Failure Model for RC Slender Beams without Shear Reinforcement Based on Kinematical Conditions (II) - Verification

  • You, Young-Min;Kang, Won-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.6
    • /
    • pp.16-25
    • /
    • 2007
  • In a companion paper, a rational mechanical model to predict the entire behavior of point-loaded RC slender beams (a/d > 2.5) without shear reinforcement was developed. This paper presents the test results of 9 slender shear beams and compares them with analytical results performed by the proposed model. They are grouped by two parameters, which are shear span ratio and concrete strength. Three kinds of concrete strength the 26.5, 39.2, and 58.8 MPa were included as a major experimental parameter together with different shear span ratios ranging from 3 to 6 depending on the test series. Tests were set up as a traditional 3 point bending test. Various measurements were taken to monitor abrupt shear failure. Test results were not only compared with analytical results from the proposed model, but also other formulas, to consider the various aspects of shear failure such as kinematical conditions or shear capacity. Finally, a review of the proposed model is presented with respect to the shear transfer mechanisms and the effect of test parameters. Results show that several assumptions and proposals adopted in the proposed model are rational and reasonable.

Seismic behavior of SFRC shear wall with CFST columns

  • Gao, Dan-Ying;You, Pei-Bo;Zhang, Li-Juan;Yan, Huan-Huan
    • Steel and Composite Structures
    • /
    • v.28 no.5
    • /
    • pp.527-539
    • /
    • 2018
  • The use of reinforced concrete (RC) shear wall with concrete filled steel tube (CFST) columns and steel fiber reinforced concrete (SFRC) shear wall has aroused widespread attention in recent years. A new shear wall, named SFRC shear wall with CFST columns, is proposed in this paper, which makes use of CFST column and SFRC shear wall. Six SFRC shear wall with CFST columns specimens were tested under cyclic loading. The effects of test parameters including steel fiber volume fraction and concrete strength on the failure mode, strength, ductility, rigidity and dissipated energy of shear wall specimens were investigated. The results showed that all tested shear wall specimens exhibited a distinct shear failure mode. Steel fibers could effectively control the crack width and improve the distribution of cracks. The load carrying and energy dissipation capacities of specimens increased with the increase of steel fiber volume fraction and concrete strength, whilst the ductility of specimens increased with the increase of steel fiber volume fraction and the decrease of concrete strength.

Strength Estimation of Joints in Floating Concrete Structures Subjected to Shear (전단을 받는 부유식 콘크리트 구조물 접합부의 강도 평가)

  • Yang, In-Hwan;Kim, Kyung-Cheol
    • Journal of Navigation and Port Research
    • /
    • v.37 no.2
    • /
    • pp.155-163
    • /
    • 2013
  • This study explores the structural behavior of module joints in floating concrete structures subjected to shear. Crack patterns, shear behavior and shear capacity of shear keys in joints of concrete module were investigated. Test parameters included shear key shape, or inclination of shear keys, confining stress levels and compressive strength of concrete. Test results showed that shear strength of joints increased as shear key inclination increased. Test results also showed that shear strength of concrete module joints increased with the increase of confining stress levels. The equation for predicting shear strength of joints was suggested, which was based on the test results. Shear strength prediction by using the equation suggested in this study showed good agreement with test results.

Experimental Study on Reinforcement Effects of Soil Shear Strength by Nylon Net(Substitute Materials Simulating a Root System) -Analysis using Simple Shear Tester under Soil Suction Control - (Nylon Net(대체근계)의 토질강도보강효과에 대한 실험적 연구 - 토양수분제어하의 단순전단시험에 의한 해석 -)

  • Lee, Chang-Woo;Youn, Ho-Joong;Jeong, Yongho
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.9 no.3
    • /
    • pp.76-81
    • /
    • 2006
  • The reinforcement of soil shear strength by nylon net as substitute materials simulating a fine root system was evaluated by soil strength parameters(apparent cohesion(c) and internal friction angle(tan${\phi}$), using simple shear tester which clearly depicts shear deformation and controls soil suction. And the results of shear test by using bamboo as a substitute materials simulating a main root system and using nylon net as a substitute materials simulating a fine root system were compared. The reinforcement of soil strength by nylon net are expressed by apparent cohesion more than internal friction angle. In addition the increment of apparent cohesion by nylon net reached a peak in suction 60 $cmH_2O$. Different from with bamboo, the possibility of the change on internal friction angle(tan${\phi}$) caused by the soil water condition was shown in shear strain 20% condition. These results show that the mechanism of reinforcement by substitute materials simulating root system may be different in the condition of various soil water content.

Shear Strength of Fine Sand -Curvature Characteristics of Failure Envelope and Stress Parameter- (가는 모래의 전단강도 -파괴포락선의 곡률특성과 상태정수에 관하여-)

  • Yoon, Yeo Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.1
    • /
    • pp.195-202
    • /
    • 1994
  • In this research, a lot of triaxial test results (CID) are analyzed to study the curvature characteristics of failure envelope of sand and parametric relationship between shear strength and state parameter by Been and Jefferies. In the conventional triaxial tests, correction for the change of sectional area of a sample and for membrane influence is essential especially in order to determine critical state (or steady state) condition more correctly. Based on the test results, a model to express the shear strength of fine sand as a function of density and stress level is presented and curvature characteristics of shear failure envelope and parametric relationship between state parameter and shear strength parameters are evaluated.

  • PDF

Shear Strength of Stud Shear Connectors in Precast Concrete Deck using Lightweight Concrete (경량콘크리트를 사용한 프리캐스트 바닥판에서 스터드 전단열결재의 전단강도)

  • Cho, Sun-Kyu;Youn, Seok-Goo;Lee, Jong-Min;Kim, Su-Hyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.414-417
    • /
    • 2006
  • In order to evaluate the shear strength of stud connectors in composite bridges using lightweight concrete decks, static push-out tests were performed. Sixteen push-out specimens were tested during this investigation. The test program consisted of two groups according to deck type, one is cast-in-place(CIP) concrete deck, the other is precast concrete deck. The experimental parameters were concrete compressive strength and bedding layer thickness. Based on the experimental results, the ultimate shear strength and the stiffness of shear connectors in lightweight concrete decks are assessed.

  • PDF