• Title/Summary/Keyword: Shear Strength Parameters

Search Result 788, Processing Time 0.033 seconds

Shear strength behaviour of coral gravelly sand subjected to monotonic and cyclic loading

  • Vu, Anh-Tuan
    • Geomechanics and Engineering
    • /
    • v.25 no.2
    • /
    • pp.89-98
    • /
    • 2021
  • The paper presents an experimental study on the strength behaviour of a coral gravelly sand from Vietnam subjected to monotonic and cyclic loading. A series of direct shear tests were carried out to investigate the shear strength behaviour and the factors affecting the shear strength of the sand such as relative density, cyclic load, amplitude of the cyclic load and loading rate. The study results indicate that the shear strength parameters of the coral gravelly sand include not only internal friction angle but also apparent cohesion. These parameters vary with the relative density, cyclic load, the amplitude of the cyclic load and loading rate. The shear strength increases with the increase of the relative density. The shear strength increases after subjecting to cyclic loading. The amplitude of the cyclic load affects the shear strength of coral gravelly sand, the shear strength increases as the amplitude of the cyclic load increases. The loading rate has insignificantly effect on the shear strength of the coral gravelly sand.

Calculation model for the shear strength of unsaturated soil under nonlinear strength theory

  • Deng, Dongping;Wen, Shasha;Lu, Kuan;Li, Liang
    • Geomechanics and Engineering
    • /
    • v.21 no.3
    • /
    • pp.247-258
    • /
    • 2020
  • The shear strength of unsaturated soils, a research hotspot in geotechnical engineering, has great guiding significance for geotechnical engineering design. Although kinds of calculation models for the shear strength of unsaturated soil have been put forward by predecessors, there is still need for new models to extensively consider the nonlinear variation of shear strength, particularly for the nonlinear effect of the net normal stress on the shear strength of unsaturated soil. Here, the shear strength of unsaturated soils is explored to study the nonlinear effects of net normal stress with the introduction of a general nonlinear Mohr-Coulomb (M-C) strength criterion, and the relationship between the matric suction (or suction stress) and degree of saturation (DOS) constructed by the soil-water characteristics curve (SWCC) of van Genuchten is also applied for unsaturated soil. Then, two calculation models (i.e., an envelope shell model and an effective stress model) are established for the shear strength of unsaturated soils under the nonlinear strength theory. In these two models, the curve of the shear strength of unsaturated soils versus the net normal stress exhibits a tendency to gently. Moreover, the proposed formulas have flexibility and convenience with five parameters (for the effective stress model) or six parameters (for the envelope shell model), which are from the M-C strength parameters of the saturated soil and fitting parameters of SWCC of van Genuchten. Thereafter, by comparison with the classical theory of the shear strength of unsaturated soils from some actual cases, the rationality and accuracy of the present models were verified.

Charts for estimating rock mass shear strength parameters

  • Wan, Ling;Wei, Zuoan;Shen, Jiayi
    • Geomechanics and Engineering
    • /
    • v.10 no.3
    • /
    • pp.257-267
    • /
    • 2016
  • Charts are used extensively in slope practical application to meet the need of quick assessment of rock slope design. However, Charts for estimating the shear strength of the rock mass of a slope are considerably limited. In this paper, based on the Hoek-Brown (HB) criterion which is widely used in rock slope engineering, we present charts which can be used to estimate the Mohr-Coulomb (MC) parameters angle of friction ${\phi}$ and cohesion c for given slopes. In order to present the proposed charts, we firstly present the derivation of the theoretical relationships between the MC parameters and ${\sigma}_{ci}/({\gamma}H)$ which is termed the strength ratio (SR). It is found that the values of $c/{\sigma}_{ci}$ and ${\phi}$ of a slope depend only on the magnitude of SR, regardless of the magnitude of the individual parameters ${\sigma}_{ci}$(uniaxial compressive strength), ${\gamma}$(unit weight) and H (slope height). Based on the relationships between the MC parameters and SR, charts are plotted to show the relations between the MC parameters and HB parameters. Using the proposed charts can make a rapid estimation of shear strength of rock masses directly from the HB parameters, slope geometry and rock mass properties for a given slope.

Investigation of shear strength models for exterior RC beam-column joint

  • Parate, Kanak;Kumar, Ratnesh
    • Structural Engineering and Mechanics
    • /
    • v.58 no.3
    • /
    • pp.475-514
    • /
    • 2016
  • Various models have been proposed by several researchers for predicting the exterior RC beam-column joint shear strength. Most of these models were calibrated and verified with some limited experimental database. From the models it has been identified that the joint shear strength majorly depends on ten governing parameters. In the present paper, detailed investigation of twelve analytical models for predicting shear strength of exterior beam-column joint has been carried out. The study shows the effect of each governing parameter on joint shear strength predicted by various models. It has been observed that the consensus on effect of few of the governing parameters amongst the considered analytical models has not been attained. Moreover, the predicted joint strength by different models varies significantly. Further, the prediction of joint shear strength by these analytical models has also been compared with a set of 200 experimental results from the literature. It has been observed that none of the twelve models are capable of predicting joint shear strength with sufficient accuracy for the complete range of experimental results. The research community has to reconsider the effect of each parameters based on larger set of test results and new improved analytical models should be proposed.

Shear Mechanism of Steel-Fiber Reinforced High Strength Concrete Beams without Shear Reinforcement (전단 보강이 없는 고강도 섬유보강 철근 콘크리트보의 전단 역학적 거동에 관한 연구)

  • 오정근;이광수;권영호;신성우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1990.04a
    • /
    • pp.51-56
    • /
    • 1990
  • Investigations on the behavior of steel fiber reinforced high strength concrete beams subjected to predominant shear are accomplished to determine their diagonal shear strength including ultimate shear strength. The parameters varied were the volume fraction(Vf) of the fibers, shear span depth ratio(a/d). The test result show that diagonal shear strength and ultimate shear strength are increased siginificantly due to crack arrest mechanism. Predictive equations are suggested for evaluating the diagonal cracking strength and ultimate shear strength of the fiber reinforced high strength concrete beams.

  • PDF

Experimental Study on Variation of Shear Strength of Reinforced Concrete Beams According to Design Parameters (설계변수에 따른 철근콘크리트 보의 전단강도 변화에 대한 실험연구)

  • Oh, Dong-Hyun;Choi, Kyung-Kyu;Park, Hong-Gun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.279-282
    • /
    • 2005
  • Experimental study is performed to investigate the variation of shear strength of reinforced concrete beams according to design parameters. The major parameters are loading condition, shear span-to-depth ratio, ratio of tensile longitudinal reinforcement, prestress and boundary rigidity.14 reinforced concrete beams without web reinforcement are tested under monotonic downward loading. The shear strength of the tested specimens were compared with the prediction by design code and Choi's method.

  • PDF

Evolution of sandstone shear strength parameters and its mesoscopic mechanism

  • Shi, Hao;Zhang, Houquan;Song, Lei
    • Geomechanics and Engineering
    • /
    • v.20 no.1
    • /
    • pp.29-41
    • /
    • 2020
  • It is extremely important to obtain rock strength parameters for geological engineering. In this paper, the evolution of sandstone cohesion and internal friction angle with plastic shear strain was obtained by simulating the cyclic loading and unloading tests under different confining pressures using Particle Flow Code software. By which and combined with the micro-crack propagation process, the mesoscopic mechanism of parameter evolution was studied. The results show that with the increase of plastic shear strain, the sandstone cohesion decreases first and then tends to be stable, while the internal friction angle increases first, then decreases, and finally maintains unchanged. The evolution of sandstone shear strength parameters is closely related to the whole process of crack formation, propagation and coalescence. When the internal micro-cracks are less and distributed randomly and dispersedly, and the rock shear strength parameters (cohesion, internal friction angle) are considered to have not been fully mobilized. As the directional development of the internal micro-fractures as well as the gradual formation of macroscopic shear plane, the rock cohesion reduces continuously and the internal friction angle is in the rise stage. As the formation of the macroscopic shear plane, both the rock cohesion and internal friction angle continuously decrease to a certain residual level.

A new statistical approach for joint shear strength determination of RC beam-column connections subjected to lateral earthquake loading

  • Kim, Jaehong;LaFavet, James M.;Song, Junho
    • Structural Engineering and Mechanics
    • /
    • v.27 no.4
    • /
    • pp.439-456
    • /
    • 2007
  • Reinforced concrete (RC) joint shear strength models are constructed using an experimental database in conjunction with a Bayesian parameter estimation method. The experimental database consists of RC beam-column connection test subassemblies that maintained proper confinement within the joint panel. All included test subassemblies were subjected to quasi-static cyclic lateral loading and eventually experienced joint shear failure (either in conjunction with or without yielding of beam reinforcement); subassemblies with out-of-plane members and/or eccentricity between the beam(s) and the column are not included in this study. Three types of joint shear strength models are developed. The first model considers all possible influence parameters on joint shear strength. The second model contains those parameters left after a step-wise process that systematically identifies and removes the least important parameters affecting RC joint shear strength. The third model simplifies the second model for convenient application in practical design. All three models are unbiased and show similar levels of scatter. Finally, the improved performance of the simplified model for design is identified by comparison with the current ACI 352R-02 RC joint shear strength model.

Shear strength of steel beams with trapezoidal corrugated webs using regression analysis

  • Barakat, Samer;Mansouri, Ahmad Al;Altoubat, Salah
    • Steel and Composite Structures
    • /
    • v.18 no.3
    • /
    • pp.757-773
    • /
    • 2015
  • This work attempts to implement multiple regression analysis (MRA) for modeling and predicting the shear buckling strength of a steel beam with corrugated web. It was recognized from theoretical and experimental results that the shear buckling strength of a steel beam with corrugated web is complicated and affected by several parameters. A model that predicts the shear strength of a steel beam with corrugated web with reasonable accuracy was sought. To that end, a total of 93 experimental data points were collected from different sources. Then mathematical models for the key response parameter (shear buckling strength of a steel beam with corrugated web) were established via MRA in terms of different input geometric, loading and materials parameters. Results indicate that, with a minimal processing of data, MRA could accurately predict the shear buckling strength of a steel beam with corrugated web within a 95% confidence interval, having an $R^2$ value of 0.93 and passing the F- and t-tests.

Joint shear strength prediction for reinforced concrete beam-to-column connections

  • Unal, Mehmet;Burak, Burcu
    • Structural Engineering and Mechanics
    • /
    • v.41 no.3
    • /
    • pp.421-440
    • /
    • 2012
  • In this analytical study numerous prior experimental studies on reinforced concrete beam-to-column connections subjected to cyclic loading are investigated and a database of geometric properties, material strengths, configuration details and test results of subassemblies is established. Considering previous experimental research and employing statistical correlation method, parameters affecting joint shear capacity are determined. Afterwards, an equation to predict the joint shear strength is formed based on the most influential parameters. The developed equation includes parameters that take into account the effect of eccentricity, column axial load, wide beams and transverse beams on the seismic behavior of the beam-to-column connections, besides the key parameters such as concrete compressive strength, reinforcement yield strength, effective joint width and joint transverse reinforcement ratio.