• 제목/요약/키워드: Shear Key

검색결과 589건 처리시간 0.024초

Shear performance of an innovative UHPFRC deck of composite bridge with coarse aggregate

  • Qi, Jianan;Wanga, Jingquan;Feng, Yu
    • Advances in concrete construction
    • /
    • 제7권4호
    • /
    • pp.219-229
    • /
    • 2019
  • This paper presents an experimental study on the structural performance of an innovative ultra-high performance fiber reinforced concrete (UHPFRC) deck with coarse aggregate of composite bridge under shear force. Test parameters included curing method and shear span-to-height ratio. Test results indicated that more short fine cracks developed beside the existing cracks due to the randomly dispersed fibers, resulting in re-distributing and homogenizing of the concrete stress beside cracks and allowing for the occurrence of more cracks with small spacing compared to normal strength concrete beams. Curing methods, incorporating steam curing and natural curing, did not have obvious effect on the nominal bending cracking strength and the ultimate strength of the test specimens. Shear reinforcement need not be provided for UHPFRC decks with a fiber volume fraction of 2%. UHPFRC decks showed superior load resistance ability after the appearance of cracks and excellent post-cracking deformability. Lastly, the current shear provisions were evaluated by the test results.

Performance comparison of shear walls with openings designed using elastic stress and genetic evolutionary structural optimization methods

  • Zhang, Hu Z.;Liu, Xia;Yi, Wei J.;Deng, Yao H.
    • Structural Engineering and Mechanics
    • /
    • 제65권3호
    • /
    • pp.303-314
    • /
    • 2018
  • Shear walls are a typical member under a complex stress state and have complicated mechanical properties and failure modes. The separated-elements model Genetic Evolutionary Structural Optimization (GESO), which is a combination of an elastic-plastic stress method and an optimization method, has been introduced in the literature for designing such members. Although the separated-elements model GESO method is well recognized due to its stability, feasibility, and economy, its adequacy has not been experimentally verified. This paper seeks to validate the adequacy of the separated-elements model GESO method against experimental data and demonstrate its feasibility and advantages over the traditional elastic stress method. Two types of reinforced concrete shear wall specimens, which had the location of an opening in the middle bottom and the center region, respectively, were utilized for this study. For each type, two specimens were designed using the separated-elements model GESO method and elastic stress method, respectively. All specimens were subjected to a constant vertical load and an incremental lateral load until failure. Test results indicated that the ultimate bearing capacity, failure modes, and main crack types of the shear walls designed using the two methods were similar, but the ductility indexes including the stiffness degradation, deformability, reinforcement yielding, and crack development of the specimens designed using the separated-elements model GESO method were superior to those using the elastic stress method. Additionally, the shear walls designed using the separated-elements model GESO method, had a reinforcement layout which could closely resist the actual critical stress, and thus a reduced amount of steel bars were required for such shear walls.

Study of Earthquake Resilient RC Shear Wall Structures

  • Jiang, Huanjun;Li, Shurong
    • 국제초고층학회논문집
    • /
    • 제10권3호
    • /
    • pp.211-218
    • /
    • 2021
  • A new type of earthquake resilient reinforced concrete (RC) shear wall structure, installed with replaceable coupling beams and replaceable corner components at the bottom of wall piers, is proposed in this study. At first, the mechanical behavior of replaceable components, such as combined dampers and replaceable corner component, is studied by cyclic loading tests on them. Then, cycling loading tests are conducted on one conventional coupled shear wall and one new type of coupled shear wall with replaceable components. The test results indicate that the damage of the new type of coupled shear wall concentrates on replaceable components and the left parts are well protected. Finally, a case study is introduced. The responses of one conventional frame-tube structure and one new type of structure installed with replaceable components under the wind and the earthquake are compared, which verify that the performance of new type of structure is much better than the conventional structure.

격자형 강합성 바닥판 이음부의 전단내력 평가 (Shear Resistance Evaluation of Steel Grid Composite Deck Joint)

  • 신현섭;박기태
    • 한국산학기술학회논문지
    • /
    • 제14권10호
    • /
    • pp.5290-5298
    • /
    • 2013
  • 본 논문에서는 프리캐스트 방식으로 제작 가능한 격자형 강합성 바닥판의 이음부에 기계식 연결방식을 적용하고자 콘크리트 전단키와 고장력볼트로 구성되는 이음부에 대해 Push-out 시험으로 전단내력을 구하였으며, 이를 전단마찰 이론에 근거한 이론식 및 설계식과 비교함으로써 전단내력을 평가하였다. 분석결과에 따르면, 이음부 접합면을 에폭시로 부착한 경우가 전단키를 강판으로 보강한 경우 보다 약 10% 정도 더 큰 전단내력을 갖는 것으로 나타났으나, 실험체간 전단내력의 편차는 전단키를 강판으로 보강한 경우가 더 작게 나타났다. 실험결과를 계산식 및 설계식과 비교한 결과, 기존 설계식으로 안전하게 설계될 수 있음을 알 수 있었다. 그러나, ACI-318에 의할 경우 이음부 전단내력이 과소평가되기 때문에 LRFD에서 제시된 설계식의 적용이 더 적당한 것으로 분석되었다.

토사지반에 설치된 역 T형 옹벽의 저판형상이 활동거동에 미치는 영향 (Effects of Base Shape of Cantilever Retaining Wall in Soil Foundation on the Sliding Behavior)

  • 유남재;이명욱;김영길;이종호
    • 산업기술연구
    • /
    • 제19권
    • /
    • pp.135-145
    • /
    • 1999
  • This thesis is to investigate the sliding behavior of cantilever retaining wall by using the commercially available program of FLAC to simulate its behavior numerically. Cantilever retaining walls with flat base, sloped base and base with shear key, uniform surcharges being applied on the surface of backfill, were investigated to figure out appropriate location of shear key beneath the base of wall and, thus, its applicability to field condition was assessed by comparing the analyzed results to each other. On the other hand, previously performed centrifuge model test results (Eum, 1996) were analyzed numerically with FLAC to compare test results with respect to characteristics of load-settlement of surcharges and load-lateral movement of wall. Based on the failure mechanism observed during centrifuge tests, limit equilibrium method of finding the ultimate load inducing the sliding failure of wall was used to compare with values of the ultimate load obtained from conventional method of limit equilibrium method. Therefore, appropriate location of shear key was determined to mobilize the maximum resistance against sliding failure of wall.

  • PDF

Shear bond strength of zirconia to resin: The effects of specimen preparation and loading procedure

  • Chen, Bingzhuo;Yang, Lu;Lu, Zhicen;Meng, Hongliang;Wu, Xinyi;Chen, Chen;Xie, Haifeng
    • The Journal of Advanced Prosthodontics
    • /
    • 제11권6호
    • /
    • pp.313-323
    • /
    • 2019
  • PURPOSE. Shear bond strength (SBS) test is the most commonly used method for evaluating resin bond strength of zirconia, but SBS results vary among different studies even when evaluating the same bonding strategy. The purpose of this study was to promote standardization of the SBS test in evaluating zirconia ceramic bonding and to investigate factors that may affect the SBS value of a zirconia/resin cement/composite resin bonding specimen. MATERIALS AND METHODS. The zirconia/resin cement/composite resin bonding specimens were used to simulate loading with a shear force by the three-dimensional finite element (3D FE) modeling, in which stress distribution under uniform/non-uniform load, and different resin cement thickness and different elastic modulus of resin composite were analyzed. In vitro SBS test was also performed to validate the results of 3D FE analysis. RESULTS. The loading flat width was an important affecting factor. 3D FE analysis also showed that differences in resin cement layer thickness and resin composite would lead to the variations of stress accumulation area. The SBS test result showed that the load for preparing a SBS specimen is negatively correlated with the resin cement thickness and positively correlated with SBS values. CONCLUSION. When preparing a SBS specimen for evaluating bond performance, the load flat width, the load applied during cementation, and the different composite resins used affect the SBS results and therefore should be standardized.

전단키를 갖는 프리캐스트 콘크리트 패널 수직접합부의 전단강도 (Shear Strength of Vertical Joints in Precast Concrete Panel with Shear Key)

  • 이상섭;박금성;배규웅
    • 대한건축학회논문집:구조계
    • /
    • 제35권9호
    • /
    • pp.151-158
    • /
    • 2019
  • A concrete core is used widely as lateral stability systems in high-rise modular buildings. As an alternative to traditional cast in-situ core, the precast concrete(PC) method can accelerate the construction of reinforced concrete cores. A core composed of precast elements differs from a in-situ core in having connections between the precast elements. The typical vertical connection between PC panels is consisted of shear keys, loop bars, lacer bars and grout. In this study, the effect of vertical connection components on shear strength is investigated experimentally. The test results show that the contribution to the shear strength is greater in order of grout strength, shear keys, lacer bars and loop bars. In addition, the numerical models to estimate the shear strength according to two crack patterns in the vertical joint of the PC panels are derived. The feasibility of the numerical models is evaluated by comparing the estimated shear strength and the test results.

Effect of particle size on direct shear deformation of soil

  • Gu, Renguo;Fang, Yingguang;Jiang, Quan;Li, Bo;Feng, Deluan
    • Geomechanics and Engineering
    • /
    • 제28권2호
    • /
    • pp.135-143
    • /
    • 2022
  • Soils are natural granular materials whose mechanical properties differ according to the size and composition of the particles, so soils exhibit an obvious scale effect. Traditional soil mechanics is based on continuum mechanics, which can not reflect the impact of particle size on soil mechanics. On that basis, a matrix-reinforcing-particle cell model is established in which the reinforcing particles are larger-diameter sand particles and the matrix comprises smaller-diameter bentonite particles. Since these two types of particles deform differently under shear stress, a new shear-strength theory under direct shear that considers the stress concentration and bypass phenomena of the matrix is established. In order to verify the rationality of this theory, a series of direct shear tests with different reinforcing particle diameter and volume fraction ratio are carried out. Theoretical analysis and experimental results showed that the interaction among particles of differing size and composition is the basic reason for the size effect of soils. Furthermore, the stress concentration and bypass phenomena of the matrix enhance the shear strength of a soil, and the volume ratio of reinforcing particles has an obvious impact on the shear strength. In addition, the newly proposed shear-strength theory agrees well with experimental values.

격자형 강합성 바닥판 이음부의 휨거동에 관한 실험적 연구 (An Experimental Study on Bending Behaviour of Steel Grid Composite Deck Joint)

  • 신현섭;이진형;박기태
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제16권5호
    • /
    • pp.68-77
    • /
    • 2012
  • 기존의 격자형 강합성 바닥판 이음부 상세는 후크형태의 철근 겹침이음 및 채움 콘크리트로 구성된다. 본 연구에서는 콘크리트 전단키와 고장력볼트로 구성된 이음부 형식에 대해 콘크리트 전단키 보강 유무를 실험변수로 휨성능평가 실험을 하였고, 그 결과를 기존 철근겹침 이음부의 휨성능과 비교 평가함으로써 기계적 연결방법에 의한 이음부 형식의 적용 가능성을 검토하였다. 실험결과의 비교 분석에 의하면, 기계적 연결방식에 의한 이음부의 최대내력이 약 30% ~ 60% 정도 더 큰 것으로 나타나서 강도 측면에서 더 우수함을 확인하였다. 모멘트-곡률 관계로부터 구한 휨강성을 비교해 보면, 철근겹침 이음부의 경우 초기 거동에서는 비교적 더 우수한 거동을 보였으나, 콘크리트 균열파괴가 발생한 이후에는 다소 급격한 단면성능의 감소를 보였다. 한편, 콘크리트 전단키의 강판 보강 유무에 따른 변수 분석 결과에 의하면 강판 보강구조가 최대내력 향상 및 휨강성 증가에 효과적임을 확인할 수 있었다.

Behaviors of novel sandwich composite beams with normal weight concrete

  • Yan, Jia-Bao;Dong, Xin;Wang, Tao
    • Steel and Composite Structures
    • /
    • 제38권5호
    • /
    • pp.599-615
    • /
    • 2021
  • The ultimate strength behaviour of sandwich composite beams with J-hooks and normal weight concrete (SCSSBJNs) are studied through two-point loading tests on ten full-scale SCSSBJNs. The test results show that the SCSSBJN with different parameters under two-point loads exhibits three types of failure modes, i.e., flexure, shear, and combined shear and flexure mode. SCSSBJN failed in different failure modes exhibits different load-deflection behaviours, and the main difference of these three types of behaviours exist in their last working stages. The influences of thickness of steel faceplate, shear span ratio, concrete core strength, and spacing of J-hooks on structural behaviours of SCSSBJN are discussed and analysed. These test results show that the failure mode of SCSSBJN was sensitive to the thickness of steel faceplate, shear span ratio, and concrete core strength. Theoretical models are developed to estimate the cracking, yielding, and ultimate bending resistance of SCSSBJN as well as its transverse cross-sectional shear resistance. The validations of predictions by these theoretical models proved that they are capable of estimating strengths of novel SCSSBJNs.