• Title/Summary/Keyword: Shear Fracture Strength

Search Result 503, Processing Time 0.027 seconds

Effects of colored zirconia surface treatment on the bond strength of veneering ceramics

  • Kim, SA-Hak;Kim, Chong-Kyen
    • Journal of Technologic Dentistry
    • /
    • v.43 no.4
    • /
    • pp.160-167
    • /
    • 2021
  • Purpose: In this study, when the etching treatment method, which is a chemical surface treatment method, is applied to colored zirconia, the shear bond strength between the veneering ceramic material and colored zirconia is compared with that without surface treatment, and the fracture type is observed to evaluate the etching treatment effect of colored zirconia. Methods: Experiments were conducted after dividing the study sample into two groups, which are the zirconia control group without surface treatment using colored zirconia blocks (without etching zirconia, NZC group) and the zirconia group treated with a commercially available etching solution (etching liquid zirconia, EZC group). Results: The mean shear bond strength of the NZC group was 20.31±2.32 Mpa, and that of the EZC group was 25.95±2.34 Mpa, and the difference between these two values was statistically significant (p<0.05). Further, the surface roughness Ra value was higher in the EZC group than in the NZC group. In the fracture pattern, cohesive fractures were dominant, and adhesive fractures and cohesive fractures were mixed. Conclusion: The bond strength was significantly higher in the group treated with colored zirconia. The fracture pattern was mostly cohesive failure in the group not treated with etching and changed to mixed failure as the etching treatment progressed.

Analysis of Steep Cuts and Slopes in Cemented Sand Using Fracture Mechanics (파괴역학을 이용한 경화모래로 이루어진 사면의 해석)

  • Kim, Tae-Hoon;Kang, Kwon-Soo;Lee, Jong-Cheon
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.161-168
    • /
    • 2003
  • Most natural deposits of sandy soil possess some degree of cementation resulting from the deposition and precipitation of cementing agents. The presence of cementation can have a significant influence on the stiffness and volume change behavior, and the strength of soils. An important feature of deposits of cemented sandy soils is their ability to remain stable in surprisingly high and almost vertical man-made cuts as well as natural slopes. Numerous field observations and studies of failures in slopes of cemented soils have reported that application of conventional analysis techniques of slope stability is inadequate. That is not only due to the fact that the failure surface of the slope is not circular, but also the fact that the average shear stress along the failure surface is much smaller than the shear strength measured in laboratory shear experiments. This observation alerts us to the fact that a mechanism different from conventional Mohr-Coulomb shear failure takes place, which may be related to fracture processes, which in turn are governed by fracture mechanics concepts and theory. In this study, steep slopes in cemented sand were assessed using fracture mechanics concepts. The results showed that FEM coupled with fracture mechanics concepts provides an excellent alternative in the design and safety assessment of earth structures in cemented soils.

Shear Bond Strength and Interfacial Characterization of Ceramic to Beryllium Free Nonprecious Alloys for Porcelain Fused to Metal Crown (베릴륨이 포함되지 않은 도재용착용 비귀금속 합금과 세라믹간의 전단결합강도와 계면특성)

  • Chung, In-Sung;Kim, Chi-Young
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.11
    • /
    • pp.228-234
    • /
    • 2010
  • Ni-Cr and Co-Cr alloy uncontained Be element for using as dental porcelain alloy were analyzed the mechanical properties through bonding strength and fracture test after the bonding with porcelain. The bonding strengths between alloy and ceramic were measured through the shear bond strength test. Consequently, the T-3 group contained Be element that had shear strength of 41.13(${\pm}5.11$)MPa was showed the highest shear strength than the other groups. The second highest group was a verabond contained Be element that had shear strength of 40.72(${\pm}5.98$)MPa. The results of the other groups according to the shear strength were Wirobond(38.40(${\pm}9.66$)MPa) belonged to Co-Cr alloy, and Verabond 2V(32.77(${\pm}4.31$)MPa), Bellabond N(28.63(${\pm}6.39$)MPa), Bellabond plus(24.97(${\pm}6.13$)MPa), Argeloy N.P. Star(22.69(${\pm}3.41$)MPa) uncontained Be element, respectively. The morphological aspects of the fracture surface between alloys and ceramic were observed that all groups were caused mixed failure as conformation attached ceramic fragments to metallic surface by fracture process.

SHEAR BOND STRENGTH OF COMPOMER ACCORDING TO DENTIN SURFACE TREATMENT (상아질 표면 처리 방법에 따른 Compomer의 전단 결합 강도)

  • 오영학;홍찬의
    • Restorative Dentistry and Endodontics
    • /
    • v.26 no.2
    • /
    • pp.171-179
    • /
    • 2001
  • The purpose of this study was to evaluate the shear bond strength of compomers according to dentin surface treatment. Two materials of compomer were devided into six groups. The compomer used in this study were Dyract AP(D) and F2000(F), Group 1 (DN) and 4(FN) were treated according to manufacturers instructions as control groups. Group 2(DE) and 5(FE) were treated with 37% phosphoric acid and group 3(DA) and 6(FA) were treated with air abrasion unit (80 psi, 50 m aluminum oxide particles) respectively as experimental groups. After dentin surface treatment, compomers were bonded. Completed samples were stored in 100% humidity. 37C during 7 days, and then, the shear bond strength of specimens were evaluated. The results were as follows: 1. In the case of Dyract AP, the shear bond strength was showed the highest value of 9.10 MPa in dentin surface treatment with air abrasion unit. but there were no significant differences to the other groups. 2. In the case of F2000. the shear bond strength was showed the highest value of 13.51MPa and there were significant differences to the other groups(p<0.05). 3. The shear bond strength of F2000 was higher than Dyract AP in each dentin surface treatment. and in the case of etching and air abrasion. there were significant differences(p<0.05). 4. As a result of observation of SEM. the most of fracture pattern was adhesive failure in group 1(DN), 2(DE) and 4(FN), and cohesive failure in group 3(DA), S(FE) and 6(FA).

  • PDF

Fracture Mechanical Fatigue Strength Evaluation of IB-Type Spot Welded Lap Joint under Tension-Shear Load (인장-전단하중을 받는 IB형 일점 Spot 용접이음재의 파괴역학적 피로강도 평가)

  • 손일선;정원석;이휘광;배동호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.5
    • /
    • pp.20-27
    • /
    • 1998
  • According as the member of the automobile body structure have been thinned their thickness and have become high strength, each part of the body structure has been put more severe stress condition. And, because fatigue strength of the spot welded lap joint is influenced by its geometrical and mechanical factors, welding condition and etc., there needs a quantitative and systematic evaluation method for them. In this study, by considering nugget edge of the spot weld part of the IB-type spot welded lap joint under tension-shear load to the ligament crack. fatigue strength of various IB-type spot welded lap joints was estimated with the stress intensity factor(S.I.F.) KIII which is fracture mechanical parameter. We could find that fatigue strength evaluation of the IB-type spot welded lap joints by KIII is more effective than the maximum principal stress ($\sigma$1max) at edge of the spot weld obtained from FEM analysis.

  • PDF

Shear Performance of Glass Fiber Reinforced Glulam Bolted Connection

  • Kim, Keon-ho;Hong, Soon-il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.5
    • /
    • pp.661-671
    • /
    • 2015
  • To evaluate the shear performance of the textile glass fiber and the sheet glass fiber reinforced glulam bolted connections, a tension type shear test was conducted. The average yield shear strength of the bolted connection of reinforced glulam was increased by 12% ~ 31% compared to the non-reinforced glulam. It was confirmed that the shear performance of 5D end distance of the glass fiber reinforced glulam connection corresponds to that of 7D of the non-reinforced glulam connection proposed in building design requirements in various countries. Compared to the non-reinforced glulam, the average shear strength of textile glass fiber reinforced glulam was markedly increased. The non-reinforced glulam and the GFRP reinforced glulam underwent a momentary splitting fracture. However, the failure mode of textile glass fiber reinforced glulam showed a good ductility.

EFFECT OF THERMOCYCLING ON BONDING OF COMPOSITE RESIN AFTER DENTIN SURFACE TREATMENTS (상아질 표면처리후 복합레진 수복시 온도변화가 결합에 미치는 영향)

  • Lee, Yong-Woo;Son, Ho-Hyun
    • Restorative Dentistry and Endodontics
    • /
    • v.16 no.2
    • /
    • pp.126-142
    • /
    • 1991
  • The purpose of this study was to evaluate the effect of various dentin surface treatments on shear bond strength, microhardness and fracture mode before and after thermocycling. Recently extracted 75 human molars were used. The teeth were sagittal sectioned faciolingually to obtain 150 specimens. They were randomly divided into six groups. Mesial and distal dentinal surfaces of specimens were exposed by grinding and treated respectively with GC-DENTIN CONDITIONER. 10-3 solution of 4-Meta, Cleansar and Primer of GLUMA, Scotchprep of Scotchbond 2, DENTIN CONDITIONER and PRIMER A, B of ALL BOND according to the manufacturers directions. Specimens of one group were not treated. Adhesive agent of Scotchbond 2, were applied and cured on the treated dentin surfaces. After P-50 were cured on them, specimens were stored in 31c water for 24 hours before shear bond strength measurement Shear bond strength was measured in 10 specimens of each group. 10 specimens of each group were thermocycled in $20^{\circ}C$, $60^{\circ}C$,$20^{\circ}C$, $4^{\circ}C$, $20^{\circ}C$ water in order, for 30 seconds respectively, 100 times a day for 7 days. After thermocycling shear bond strength was measured. Microhardness was checked on treated dentin surface and fractured dentin surface in 10 specimens respectievly. Francture modes were observed with SEM The following results were obtained. 1. Before thermocycling. shear bond strengths in the specimens treated with DENTIN CONDITIONER and PRIMER A, B of ALL BOND were significantly higher than those in other specimens(P<0.01). 2. After thermocycling. shear bond strengths in the specimens treated with Cleanser and Primer of GLUMA, Scotchprep of Scotchbond 2 and DENTIN CONDITIONER and PRIMER A, B of AIL BOND were significantly higher than those in specimens not: treated, treated with GC-DENTIN CONDITIONER and 10-3 solution of 4-Meta(P<0.01). Shear bond strengths in the specimens treated with GC-DENTIN CONDITIONER and PRIMER A, B of ALL BOND were significantly higher than those in other specimens except those treated with Scotchprep of Srotchbond 2(P<0.01). 3. Shear bond strengths after thermocycling were reduced in the specimens not treated, treated with GC-DENTIN CONDITIONER and 10-3 solution of 4-Meta and were increased in the specimens treated with Cleanser and Primer of GLUMA, Scotchprep of Scotchbond 2, without significance, compared with those before thermocycling. In the specimens treated with DENTIN CONDITIONER and PRIMER A, B of ALL BOND, shear bond strengths after thermocycling were significantly increased, compared with those before thermocycling(P<0.01). 4. Microhardnesses in the fractured surfaces after shear bond strength measurement were significantly increased in the specimens treated with 10-3 solution of 4-Meta and significantly decreased in the specimens treated with DENTIN CONDITIONER and PRIMER A, B of ALL BOND, compared with those in the treated dentin surfaces(P<0.01). 5. In the specimens treated with Cleanser and Primer of GLUMA, Scotchprep of Scotchbond 2 and DENTIN CONDITIONER and PRIMER A, B of ALL BOND, cohesive fracture modes were observed more than adhesive fracture modes.

  • PDF

Effects of PCB Surface Finishes on Mechanical Reliability of Sn-1.2Ag-0.7Cu-0.4In Pb-free Solder Joint (PCB 표면처리에 따른 Sn-1.2Ag-0.7Cu-0.4In 무연솔더 접합부의 기계적 신뢰성에 관한 연구)

  • Kim, Sung-Hyuk;Kim, Jae-Myeong;Yoo, Sehoon;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.4
    • /
    • pp.57-64
    • /
    • 2012
  • Ball shear test was performed by test variables such as loading speed and annealing time in order to investigate the effect of surface finishes on the bonding strength of Sn-1.2Ag-0.7Cu-0.4In Pb-free solder. The shear strength increased and the ductility decreased with increasing shear speed. With increasing shear speed, the electroless nickel immersion gold (ENIG) finish showed dominant brittle fracture mode, while organic solderability preservative (OSP) finish showed pad open fracture mode. The shear strength and toughness for both surface finishes decreased with increasing annealing time under the high-speed shear test of 500 mm/s. Typically, the thickness of intermetallic compound increased with increasing annealing time, which means that exposure of brittle fracture became much easier. With increasing annealing time, the both ENIG and OSP finishes exhibited the pad open fracture mode. Overall, ENIG finish showed higher shear strength rather than OSP finish due to its superior barrier stability.

An Experimental Study on Structural Behavior of Bolted Angle Connections with Austenitic Stainless Steel (오스테나이트계 스테인레스강(STS304) 앵글 볼트 접합부의 구조적 거동에 관한 실험적 연구)

  • Kim, Min-Seong;Kim, Tae-Soo;Kim, Seung-Hun;Lee, Yong-Taeg
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.1
    • /
    • pp.29-39
    • /
    • 2011
  • With regard to steel construction, many studies have been performed to examine the structural behavior of the bolted connections domestically and in other countries. Especially, a domestic study was conducted on the block shear fracture and shear lag effect on the single-bolted angle connection in carbon steel. In this study, specimens were prepared with the end distance parallel to the loading direction and bolt arrangement ($1{\times}1$, $1{\times}2$), as the main variables. Then the fracture mode and the curling effect on the bolted angle connection in austenitic stainless steel were investigated. Moreover, the fracture mode and ultimate strength were compared, and the strength reduction by curling was estimated.

A SHEAR BOND STRENGTH OF RESIN CEMENTS BONDED TO PRESSABLE PORCELAIN WITH VARIOUS SURFACE TREATMENTS

  • Lee Jong-Yeop;Im Eui-Bin
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.3
    • /
    • pp.379-386
    • /
    • 2003
  • Statement of problem. Resin cements are widely used in adhesive dentistry specially on all ceramic restorations. It is needed to find out adequate bonding strength between different porcelain surface treatments, commercially available porcelains, and different resin cement systems. Purpose. The purpose of this study was to evaluate shear bond strength of resin cements bonded to porcelains in three different modalities; 5 different porcelain surface treatments, 3 different resin cement systems and 3 different commercially available pressable porcelains. Material and Method. This study consisted of 3 parts. Part I examined the effect of five different surface treatments on the pressable porcelain. Fifty discs (5 mm in diameter and 3 mm in height) of Authentic porcelain were randomly divided into 5 groups (n = 10). The specimens were sanded with 320 grit SiC paper followed by 600 grit SiC paper. The specimens were treated as follow: Group 1-Sandblasting (aluminum oxide) only, Group 2 - sandblasting/ silane, Group 3 - sandblasting/ acid etching/ silane, Group 4 - acid etching only, Group 5 - acid etching/ silane. Part II examined the shear bond strength of 3 different resin cement systems (Duolink, Variolink II, Rely X ARC) on acid etching/ silane treated Authentic pressable porcelain. Part 3 examined the shear bond strength of Duolink resin cement on 3 different pressable porcelains (Authentic, Empress I, Finesse). All cemented specimens were stored in distilled water for 2 hours and tested with Ultradent shear bond strength test jig under Universal Instron machine until fracture. An analysis of variance(ANOVA) test was used to evaluate differences in shear bond strength. Result. The shear bond strength test resulted in the following: (1) Acid etched porcelains recorded greater shear bond strength values to the sandblasted porcelains. (2) Silane treated porcelains recorded greater shear bond strength values to non-silane treated porcelains. (3) There was no significant difference between sandblasting/ acid etching/ silane treated and acid etching/ silane treated porcelains. However those values were much higher than other three groups. (4) The shear bond strength with Variolink II was lower than the value of Duolink or Rely X ARC. (5) The shear bond strength of Finesse was lower than the value of Authentic or Empress I.