• Title/Summary/Keyword: Shear Displacement

Search Result 1,576, Processing Time 0.028 seconds

Evaluation and Improvement of Deformation Capacities of Shear Walls Using Displacement-Based Seismic Design

  • Oh, Young-Hun;Han, Sang-Whan;Choi, Yeoh-Soo
    • International Journal of Concrete Structures and Materials
    • /
    • v.18 no.1E
    • /
    • pp.55-61
    • /
    • 2006
  • RC shear walls are frequently used as lateral force-resisting system in building construction because they have sufficient stiffness and strength against damage and collapse. If RC shear walls are properly designed and proportioned, these walls can also behave as ductile flexural members like cantilevered beams. To achieve this goal, the designer should provide adequate strength and deformation capacity of shear walls corresponding to the anticipated deformation level. In this study, the level of demands for deformation of shear walls was investigated using a displacement-based design approach. Also, deformation capacities of shear walls are evaluated through laboratory tests of shear walls with specific transverse confinement widely used in Korea. Four full-scale wall specimens with different wall boundary details and cross-sections were constructed for the experiment. The displacement-based design approach could be used to determine the deformation demands and capacities depending on the aspect ratio, ratio of wall area to floor plan area, flexural reinforcement ratio, and axial load ratio. Also, the specific boundary detailing for shear wall can be applied to enhance the deformation capacity of the shear wall.

Effect of Test Parameter on Ball Shear Properties for BGA and Flip Chip Packages (BGA 및 Flip Chip 패키지의 볼전단 특성에 미치는 시험변수의 영향)

  • Gu, Ja-Myeong;Jeong, Seung-Bu
    • Proceedings of the KWS Conference
    • /
    • 2005.06a
    • /
    • pp.19-21
    • /
    • 2005
  • The ball shea. tests for ball grid array (BGA) and flip chip packages were carried out with different displacement rates to find out the optimum condition of the displacement rate for this test. The BGA packages consisted of two different kinds of solder balls (eutectic Sn-37wt.%Pb and Sn-3.5wt.%Ag) and electroplated Au/Ni/Cu substrate, whereas the flip chip package consisted of electroplated Sn-37Pb solder and Cu UBM. The packages were reflowed up to 10 times, or aged at 443 K up to 21 days. The variation of the displacement rate resulted in the variations of the shear properties such as shear force, displacement rate at break, fracture mode and strain rate sensitivity. The increase in the displacement rate led to the increase of the shear force and brittleness of solder joints.

  • PDF

Short- and long-term analyses of shear lag in RC box girders considering axial equilibrium

  • Xiang, Yiqiang;He, Xiaoyang
    • Structural Engineering and Mechanics
    • /
    • v.62 no.6
    • /
    • pp.725-737
    • /
    • 2017
  • An analytical method considering axial equilibrium is proposed for the short- and long-term analyses of shear lag effect in reinforced concrete (RC) box girders. The axial equilibrium of box girders is taken into account by using an additional generalized displacement, referred to as the longitudinal displacement of the web. Three independent shear lag functions are introduced to describe different shear lag intensities of the top, bottom, and cantilever plates. The time-dependent material properties of the concrete are simulated by the age-adjusted effective modulus method (AEMM), while the reinforcement is assumed to behave in a linear-elastic fashion. The differential equations are derived based on the longitudinal displacement of the web, the vertical displacement of the cross section, and the shear lag functions of the flanges. The time-dependent expressions of the generalized displacements are then deduced for box girders subjected to uniformly distributed loads. The accuracy of the proposed method is validated against the finite element results regarding the short- and long-term responses of a simply-supported RC box girder. Furthermore, creep analyses considering and neglecting shrinkage are performed to quantify the time effects on the long-term behavior of a continuous RC box girder. The results show that the proposed method can well evaluate both the short- and long-term behavior of box girders, and that concrete shrinkage has a considerable impact on the concrete stresses and internal forces, while concrete creep can remarkably affect the long-term deflections.

What is the Faults? (단층이란 무엇인가?)

  • Lee, Byung-Joo;Cheong, Jang-Yeong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2007.09a
    • /
    • pp.127-137
    • /
    • 2007
  • Faults are fractures along which there is visible offset by shear displacement parallel to the fracture surface. Faults can occur as single discrete breaks, but where the rock has been repeatedly faulted, or where the rock is especially weak, no discrete break may be evident. What forms instead is a fault zone composed of countless subparallel and interconnecting closely spaced fault surfaces. Faulting is fundamentally a brittle mechanism for achieving shear displacement. At deep crustal levels where rocks tend to deform plastically under conditions of elevated temperature and confining pressure, shear displacement is achieved by and development of shear zones. In this paper authors propose the fault grade in Korea.

  • PDF

Evaluation of Shear Behavior on Sands According to Confinement Condition in Direct Shear Test (직접전단실험 시 구속조건에 따른 모래의 전단거동 평가)

  • Byun, Yonghoon;Kim, Youngho;Song, Myungjun;Lee, Jongsub
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.1
    • /
    • pp.5-13
    • /
    • 2013
  • Soils around a pile are highly constrained when the vertical load is applied to the pile. However, the conventional direct shear test cannot evaluate the shear strength of the soils under the normal confinement condition. The goal of this study is to evaluate the shear behaviors according to the normal displacement confinement condition including free normal displacement (FND) and constrained normal displacement (CND) during direct shearing. Jumunjin sands were prepared at the different relative densities and loaded at the different normal stresses. The specimens were sheared according to the normal confinement conditions. Experimental results show that shear strengths obtained by the CND tests are higher than those obtained by the FND tests. In addition, for the constrained normal displacement condition, the increment of shear strength increases with the increase of relative density, while the increment of shear strength decreases with the initial normal stress. This study suggests that the effect of confinement condition on the shear strength should be considered when the stability of constrained soils is analyzed.

Improvement of a Requirement for Providing Special Boundary Element Considering Feature of Domestic High-rise Shear Walls

  • Kim, Taewan
    • Architectural research
    • /
    • v.15 no.1
    • /
    • pp.43-52
    • /
    • 2013
  • The reinforced concrete shear walls are being widely used in the domestic high-rise residential complex buildings. If designed by current codes, the special boundary element is needed in almost all high-rise shear wall buildings. This is because the equation for determining the provision of the special boundary element in the current codes cannot reflect the characteristics of the domestic high-rise shear walls with high axial load ratio and high proportion of elastic displacement to total displacement. In this study, a new equation to be able to reflect the characteristics is proposed. By using the equation, the special boundary element may not be necessary in certain cases so that structural engineers can relieve the burden of installing the special boundary element in every high-rise shear wall.

Development of Stress, Load and Displacement Controlled Direct Shear Apparatus for Jointed Rock (응력, 하중, 변위제어 방식의 암석 절리면 전단시험기의 개발)

  • 김대영;천병식;서영호;이영남
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.471-477
    • /
    • 1999
  • A new stress, load and displacement controlled direct shear apparatus has recently been developed at the Hyundai Institute of Construction Technology This direct shear apparatus is capable of testing of rock joint under constant normal stiffness, constant normal stress or constant normal load boundary conditions. This paper describes this direct shear apparatus and illustrates results of shear tests at constant normal stress condition, constant normal load condition and constant normal stiffness condition with dental stones which have a same joint roughness and unconfined compressive strength.

  • PDF

Seismic performance and design method of PRC coupling beam-hybrid coupled shear wall system

  • Tian, Jianbo;Wang, Youchun;Jian, Zheng;Li, Shen;Liu, Yunhe
    • Earthquakes and Structures
    • /
    • v.16 no.1
    • /
    • pp.83-96
    • /
    • 2019
  • The seismic behavior of PRC coupling beam-hybrid coupled shear wall system is analyzed by using the finite element software ABAQUS. The stress distribution of steel plate, reinforcing bar in coupling beam, reinforcing bar in slab and concrete is investigated. Meanwhile, the plastic hinges developing law of this hybrid coupled shear wall system is also studied. Further, the effect of coupling ratio, section dimensions of coupling beam, aspect ratio of single shear wall, total height of structure and the role of slab on the seismic behavior of the new structural system. A fitting formula of plate characteristic values for PRC coupling beams based on different displacement requirements is proposed through the experimental date regression analysis of PRC coupling beams at home and abroad. The seismic behavior control method for PRC coupling beam-hybrid coupled shear wall system is proposed based on the continuous connection method and through controlling the coupling ratio, the roof displacement, story drift angle of hybrid coupled shear wall system, displacement ductility of coupling beam.

Cyclic behavior of various sands and structural materials interfaces

  • Cabalar, Ali Firat
    • Geomechanics and Engineering
    • /
    • v.10 no.1
    • /
    • pp.1-19
    • /
    • 2016
  • This paper presents the results of an intensive experimental investigation on cyclic behavior of various sands and structural materials interface. Comprehensive measurements of the horizontal displacement and shear stresses developed during testing were performed using an automated constant normal load (CNL) cyclic direct shear test apparatus. Two different particle sizes (0.5 mm-0.25 mm and, 2.0 mm-1.0 mm) of sands having distinct shapes (rounded and angular) were tested in a cyclic direct shear testing apparatus at two vertical stress levels (${\sigma}=50kPa$, and 100 kPa) and two rates of displacement ($R_D=2.0mm/min$, and 0.025 mm/min) against various structural materials (i.e., steel, concrete, and wood). The cyclic direct shear tests performed during this investigation indicate that (i) the shear stresses developed during shearing highly depend on both the shape and size of sand grains; (ii) characteristics of the structural materials are closely related to interface response; and (iii) the rate of displacement is slightly effective on the results.

Super convergent laminated composite beam element for lateral stability analysis

  • Kim, Nam-Il;Choi, Dong-Ho
    • Steel and Composite Structures
    • /
    • v.15 no.2
    • /
    • pp.175-202
    • /
    • 2013
  • The super convergent laminated composite beam element is newly derived for the lateral stability analysis. For this, a theoretical model of the laminated composite beams is developed based on the first-order shear deformation beam theory. The present laminated beam takes into account the transverse shear and the restrained warping induced shear deformation. The second-order coupling torque resulting from the geometric nonlinearity is rigorously derived. From the principle of minimum total potential energy, the stability equations and force-displacement relationships are derived and the explicit expressions for the displacement parameters are presented by applying the power series expansions of displacement components to simultaneous ordinary differential equations. Finally, the member stiffness matrix is determined using the force-displacement relationships. In order to show accuracy and superiority of the beam element developed by this study, the critical lateral buckling moments for bisymmetric and monosymmetric I-beams are presented and compared with other results available in the literature, the isoparametric beam elements, and shell elements from ABAQUS.