• Title/Summary/Keyword: Shear Connector

Search Result 254, Processing Time 0.025 seconds

Frictional effects on the cyclic response of laterally loaded timber fasteners

  • Allotey, Nii;Foschi, Ricardo
    • Structural Engineering and Mechanics
    • /
    • v.21 no.1
    • /
    • pp.1-18
    • /
    • 2005
  • Foschi's connector model is used as a basic component in the development of nonlinear analysis programs for timber structures. This paper presents the extension of the model to include the effect of shaft frictional forces. The wood medium is modeled using the Foschi embedment model, while shaft friction is modeled using an elastic Coulomb-type friction model. The initial confining pressure for the case of driven fasteners is accounted for by a lateral shift of the load-embedment curve. The model is used to compute the cyclic response of both driven and inserted fasteners. The results obtained from the cases studied indicate that initial confining pressure and friction do not have a significant effect on the computed hysteretic response, however, they significantly affect the computed amount of fastener withdrawal. This model is particularly well-suited for modeling the hysteretic response of shear walls with moderate fastener withdrawal under lateral cyclic or earthquake loading.

A method for evaluation of longitudinal joint connections of decked precast concrete girder bridges

  • Smith, Matthew Z.;Li, Yue;Bulleit, William M.
    • Structural Engineering and Mechanics
    • /
    • v.40 no.3
    • /
    • pp.297-313
    • /
    • 2011
  • As bridge conditions in the United States continue to deteriorate, rapid bridge replacement procedures are needed. Decked precast prestressed concrete (DPPC) girders are used for rapid bridge construction because the bridge deck is precast with the girders eliminating the need for a cast-in-place slab. One of the concerns with using DPPC girders as a bridge construction option is the durability of the longitudinal joints between girders. The objectives of this paper were to propose a method to use a spring element modeling procedure for representing welded steel connector assemblies between adjacent girders in DPPC girder bridges, perform a preliminary study of bridge performance under multiple loading scenarios and bridge configurations, and discuss model flexibility for accommodating future field data for model verification. The spring elements have potential to represent the contribution of joint grout materials by altering the spring stiffness.

Load Transfer Capacity for the Planar Joints between Existing and New Slab in Apartment Remodelling Construction for Enlarging the Interior Space (평면확장형 공동주택 리모델링 공사에서 신/구 슬래브 접합부의 횡방향 하중전달 능력)

  • You Young Chan;Kim Seung Hun;Choi Ki Sun;Kim Keung Hwan;Lim Byung Ho;Yu Jee Yeung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.295-298
    • /
    • 2005
  • In General, post-installed dowel bars are used as a shear connector to ensure the composite actions between new slabs and existing slabs in an apartment remodelling constructions expecially for enlarging the interior space outward the existing buildings. But, it has not been checked that the connection performance between existing and new slab is satisfactory not only for the structural safety condition but also the for serviceability and dwelling requirements. In this research, an experimental works were presented to evaluate the load transfer capacity for the planar joints between existing and new slab. The existing slabs were obtained from the existing apartment housing which will be demolished. Test results showed that the planar joints with post-installed dowel bars behaved in full composite modes until ultimate capacity of test specimens, so sufficient ultimate and serviceability performance are confirmed.

  • PDF

Performance Requirement of Cast-in-place Concrete with Sandwich Insulation (타설형 콘크리트 중단열 벽체의 요구성능 분석)

  • Park, Jun-Ho;Yu, Jung-Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.10-11
    • /
    • 2014
  • Energy load of building affected by insulation performance of building's exterior. and insulation system can be classify interior insulation, exterior insulation, sandwich insulation according to install place of insulation. but within interior insulation system, corner wall and the cross outer wall-slab insulation part may occur thermal bridges. And then, within exterior insulation system is more superior insulation performance than interior insulation, but it has difficult to apply, easily broken at high building because of strong wind load. And also difficult to maintenance exterior insulation system. So, in this study, to found requirement performance of cast-in-place sandwich insulation system that is superior insulation performance and easy construction and maintenance. requirement performance of cast-in-place sandwich insulation system is 1) To avoid thermal bridges in the insulation performance, 2) Both sides concrete wall can be composite action in the structural performance. Because of this study, can develops cast-in-place sandwich insulation system and this insulation system contribute to improve insulation performance of apartment-house and high building.

  • PDF

An Experimental Studies on the Fatigue Behavior of Preflex Girder (프리플렉스형의 피로거동에 관한 실험적 고찰)

  • CHANG, Dong Il;Lee, Myeong Gu;LEE, Seung Yong
    • Journal of Korean Society of Steel Construction
    • /
    • v.8 no.3 s.28
    • /
    • pp.107-116
    • /
    • 1996
  • The studies are conducted to investigate the fatigue and fracture, behavior of preflex girder. In this work, the fatigue tests using by constant amplitude fatigue loading and 4-point-loading to maintain pure bending condition in the mid-span of preflex girder will be performed. It is expected from the results of the studies to provide the fatigue strength and the S-N curve of preflex girders. In addition, it will be ensured that fracture initiation occurs in the welded part of horseshoe-type shear connector as well as in other welded joints.

  • PDF

Deterioration in strength of studs based on two-parameter fatigue failure criterion

  • Wang, Bing;Huang, Qiao;Liu, Xiaoling
    • Steel and Composite Structures
    • /
    • v.23 no.2
    • /
    • pp.239-250
    • /
    • 2017
  • In the concept of two-parameter fatigue failure criterion, the material fatigue failure is determined by the damage degree and the current stress level. Based on this viewpoint, a residual strength degradation model for stud shear connectors under fatigue loads is proposed in this study. First, existing residual strength degradation models and test data are summarized. Next, three series of 11 push-out specimen tests according to the standard push-out test method in Eurocode-4 are performed: the static strength test, the fatigue endurance test and the residual strength test. By introducing the "two-parameter fatigue failure criterion," a residual strength calculation model after cyclic loading is derived, considering the nonlinear fatigue damage and the current stress condition. The parameters are achieved by fitting the data from this study and some literature data. Finally, through verification using several literature reports, the results show that the model can better describe the strength degradation law of stud connectors.

An Analytic study on the bond of the contact surface in CFT tubular column (중심축하중을 받는 CFT 합성기둥의 접촉면 부착에 관한 해석적 연구)

  • Ye, Sang-Min;Lee, Soo-Young;Kim, Yun-Tae;Park, Seoug-Moo
    • Proceeding of KASS Symposium
    • /
    • 2005.05a
    • /
    • pp.205-212
    • /
    • 2005
  • In order for utilization of the concrete filled tubular, It Is necessary to scrutinize interfacial characteristics between heterogeneous materials, and be performed to various analytical studies on the composite structure. In this paper, this analytic study is carried on using ABAQUS Package/ Version 5.8-1, and the variables aye the relations between the coefficient of friction and the contact pressure for analyzing the behavior on the contact surface, through modifying the analytic methods and improving some problems. It is used to subdivided analytical methods in this research which categorize into four regions and can obtain closer effect for the bond behavior. Four categories compose of the chemical bond and mechanical bond legions replaced the full-interaction before yielding, and the pure friction and moving-down regions after yielding.

  • PDF

Analysis of curved multicell box girder assemblages

  • Razaqpur, A. Ghani;Li, Hangang
    • Structural Engineering and Mechanics
    • /
    • v.5 no.1
    • /
    • pp.33-49
    • /
    • 1997
  • A method of analysis is proposed for curved multicell box girder grillages. The method can be used to analyze box girder grillages comprising straight and/or curved segments. Each segment can be modelled by a number of beam elements. Each element has three nodes and the nodal degrees of freedom (DOF) consist of the six DOF for a conventional beam plus DOF to account for torsional warping, distortion, distortional warping, and shear lag. This element is an extension of a straight element that was developed earlier. For a more realistic analysis of the intersection regions of non-colinear box girder segments, the concept of a rigid connector is introduced, and the compatibility requirements between adjoining elements in those regions are discussed. The results of the analysis showed good agreement with the shell finite element results, but the proposed method of analysis needs a fraction of the time and effort compared to the shell finite element analysis.

Evaluation of Static Strength of Group Stud Shear Connection in Precast Concrete Deck Bridges (프리캐스트 콘크리트 바닥판 교량의 그룹 스터드 전단연결부 강도평가)

  • Shim, Chang Su;Jeon, Seung Min;Kim, Dong Wook
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.2
    • /
    • pp.333-345
    • /
    • 2008
  • concrete deck bridges are increasingly aplied to twin- girder bridges and open-stel box girder bridges.One of the most dificult isues in the design of shear conect ors is the mater of achieving ful composite action. Many connectors in smal area require a significant section los of precast decks resulting in difficult reinforcement details. In this closer spacing than the required minimum spacing in the design codes was evaluated through static tests. Test results s howed that the ultimate strength decreased as the conector spacing was reduced. The strength enhancement was observed due to aditional reinforcement for precast slabs or for shear pockets. Thus, the design of group stud shear connection needs to anticipate failure modes and the conector failure should be induced. Based on the test results, an empirical equation consi dering stud spacing was proposed to evaluate the ultimate strength of group stud shear conection. Fatigue tests showed n o reduction in fatigue life of the group stud shear conection in the range of this research. Details of the precast decks wer e enhanced using the findings of the study.

A STUDY OF THE STRESS DISTRIBUTION ON THE SECOND ABUTMENT AND SUPPORTING TISSUES IN FIXED PARTIAL DENTURE USING THREE DIMENSIONAL FINITE ELEMENT ANALYSIS METHOD (고정성 가공의치에서 이차 지대치에 발생하는 응력의 삼차원 유한요소법적 분석)

  • Kim, Jeong-Hee;Jo, Kwang-Hun;Lee, Cheong-Hee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.5
    • /
    • pp.675-694
    • /
    • 2000
  • The purpose of this study was to investigate the displacement of and the stress distribution on the prosthesis, abutment, and its supporting tissues under functional load, and the effect of alteration in root length of 2nd abutment. The 3-dimensional finite element method was used and the finite element models were prepared in which the abutments of left mandibular 5 unit axed partial denture were canine, the 1st pre-molar and the 2nd molar, and the root lengths of canines were as follows. Model I : Root length of canine was 2mm longer than the 1st premolar Model II : Root length of canine was 2mm shorter than the 1st premolar Static compressive force of 300N was applied to connector between 2nd premolar & 1st molar, and then von Mises stress, displacement and reaction force were obtained. The results were as follows : 1. In fixed partial denture, prosthesis under load on pontic was rotated around mesio-distal long axis of it from longual side to buccal, and simultaneously bended in buccal and gingival direction with mesial end deformed in gingival direction and distolingual end in occlusal. 2. Clinical crowns of abutments were bended in the same directions with those in which prosthesis deforms. Due to that, roots of anterior abutments were twisted in counterclockwise with concentration of shear stress on distal or distobuccal sides of their cervices, and that of posterior was in clockwise with concentration of shear stress on mesiobuccal side of it in the same level with anterior abutments. 3. In case that root length of the 2nd abutment was longer than that of the 1st abutment, its displacement and reaction force which means the force tooth exerts on the surrounding periodontal tissues were smaller but shear stress on itself was larger than in the case root length of 2nd abutment was shorter.

  • PDF