• Title/Summary/Keyword: Shear Bond Stress

Search Result 147, Processing Time 0.026 seconds

Experimental Study by Single and Double Face Shear Test of Bond Ability between Carbon Fiber Reinforced Plate and Concrete. (1면과 2면 인장전단 실험 방법에 따른 부착성능에 관한 실험적 연구)

  • Kang Dae Eon;Woo Hyun Su;Choi Ki Sun;Yang Won Jik;You Young Chan;Yi Waon Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.315-318
    • /
    • 2005
  • The objective of this study is to find out discrepancy in ability of bond behavior between Carbon fiber-reinforced polymer(CFRP Plate) and concrete by method of experiment. For the objective, single and double face shear test were tested. From the experimental results, it was analyzed bond strength of FRP to concrete, distribution of stress and strain of FRP. The bond strength and the effective bond length was evaluated by the theory of existing studies. Effective bond length of single face test was smaller than it of double face test.

  • PDF

Bond-Strengthening Hooks for RC Members with High Strength Spirals

  • Kim Kil-Hee;Sato Yuichi
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.835-842
    • /
    • 2005
  • This paper presents an experimental investigation of bond-strengthening hooks as a new method to increase bond strength along flexural reinforcing bars in reinforced concrete (RC) beams and columns. The RC members, which consisted of 1,300 MPa-class spirals as shear reinforcement, often suffered from bond splitting failure. The proposed method attempts to increase confining stiffness around the flexural bars by placing U-shaped hooks and to prevent premature bond splitting failure. Twelve specimens with varied amounts and sizes of the hooks were prepared to verify the strengthening effectiveness under monotonic and cyclic loading conditions. The test result indicated that the hooks increased the bond strength along the flexural bars although the strengthening effectiveness was limited by effective reinforcement ratio $P_{be}$. This limit is determined by size of stress-transmitting zones of concrete around anchors of the hooks. Anchors of the hooks are recommended to be longer than twelve times the hook diameter and inserted deeper than a quarter of the member depth (D/4). Proposed design equations provide modest estimates of the shear strengths.

Effect of Bond Length and Web Anchorage on Flexural Strength in RC Beams Strengthened with CFRP Plate (부착길이와 복부정착이 CFRP판으로 보강된 RC 보의 휨 보강효과에 미치는 영향)

  • 박상렬
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.5
    • /
    • pp.645-652
    • /
    • 2002
  • This paper presents the flexural behavior and strengthening effect of reinforced concrete beams bonded with carbon FRP plate. Parameters involved in this experimental study were plate bond length and sheet web anchorage length. Test beams were strengthened with FRP plate on the soffit and anchored with FRP sheet on the web. In general, strengthened beams with no web anchorage were failed by concrete cover failure along the longitudinal reinforcement. On the other hand, strengthened beams with web anchorage were finally failed by delamination shear failure within concrete after breaking of CFRP sheet wrapping around web. The ultimate load and deflection of strengthened beams increased with an increased bond length of FRP plate. Also, the ultimate load and deflection increased with an increased anchorage length of FRP sheet. Particularly, the strengthened beams with web anchorage maintained high ultimate load resisting capacity until very large deflection. The shape of strain distribution of CFRP plate along beam was very similar to that of bending moment diagram. Therefore, an assumption of constant shear stress in shear span could be possible in the analysis of delamination shear stress of concrete. In the case of full bond length, the ultimate resisting shear stress provided by concrete and FRP sheet Increased with an increase of web anchorage length. In the resisting shear force, a portion of the shear force was provided by FRP anchorage sheet.

Flexural Capacity of the Profiled Steel Composite Beams with Truss Deck Plate (트러스 데크를 사용한 강판성형 합성보의 휨성능 평가)

  • Heo, Byung Wook;Kwak, Myong Keun;Bae, Kyu Woong;Jung, Sang Min;Kang, Suk Kuy
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.4
    • /
    • pp.413-423
    • /
    • 2007
  • Slimfloor composite-beam systems could considerably reduce the story height of a building if the steel beam would be installed deep into the concrete floor slab. However, as the depth of the steel beam's installation is limited, it cannot cope with the various demands of building systems. To address this problem, a profiled steel beam section that can control the depth of the steel beam's and slabs' installation was developed in this study. Presented herein are the results of an experiment that was conducted focusing on the flexural behavior of the partially connected composite beams with profiled steel beams encased in composite concrete slabs. Five full-scale specimens with different slab types, with or without shear connection and reinforcement bars, were constructed and tested in this study. As a result, the shear bond stress without an additional shear connection was found to be $0.20{\sim}0.76N/mm^2$due to the inherent mechanical and chemical bond stress.

Experimental investigation of natural bond behavior in circular CFTs

  • Naghipour, Morteza;Khalili, Aidin;Hasani, Seyed Mohammad Reza;Nematzadeh, Mahdi
    • Steel and Composite Structures
    • /
    • v.42 no.2
    • /
    • pp.191-207
    • /
    • 2022
  • Undoubtedly, the employment of direct bond interaction between steel and concrete is preceding the other mechanisms because of its ease of construction. However, the large scatter in the experimental data about the issue has hindered the efforts to characterize bond strength. In the following research, the direct bond interaction and bond-slip behavior of CFTs with circular cross-section were examined through repeated load-reversed push-out tests until four cycles of loading. The influence of different parameters including the diameter of the tube and the use of shear tabs were assessed. Moreover, the utilization of expansive concrete and external spirals was proposed and tested as ways of improving bond strength. According to the results section dimensions, tube slenderness, shrinkage potential of concrete, interface roughness and confinement are key factors in a natural bond. Larger diameters will lead to a considerable drop in bond strength. The use of shear tabs by their associated bending moments increases the bond stress up to eight times. Furthermore, employment of external spirals and expansive concrete have a sensible effect on enhancing bonds. Macro-locking was also found to be the main component in achieving bond strength.

Analytical model for flexural and shear strength of normal and high-strength concrete beams

  • Campione, Giuseppe
    • Structural Engineering and Mechanics
    • /
    • v.78 no.2
    • /
    • pp.199-207
    • /
    • 2021
  • In the present paper, an analytical model is proposed to determine the flexural and shear strength of normal and high-strength reinforced concrete beams with longitudinal bars, in the presence of transverse stirrups. The model is based on evaluation of the resistance contribution due to beam and arch actions including interaction with stirrups. For the resistance contribution of the main bars in tension the residual bond adherence of steel bars, including the effect of stirrups and the crack spacing of R.C. beams, is considered. The compressive strength of the compressed arch is also verified by taking into account the biaxial state of stresses. The model was verified on the basis of experimental data available in the literature and it is able to include the following variables in the resistance provision: - geometrical percentage of steel bars; - depth-to-shear span ratio; - resistance of materials; - crack spacing; - tensile stress in main bars; - residual bond resistance including the presence of stirrups;- size effects. Finally, some of the more recent analytical expressions able to predict shear and flexural resistance of concrete beams are mentioned and a comparison is made with experimental data.

An Analytic Study on the Bond Stress between Concrete and Steel Tube in CFT Rectangular Column (충전각형강관기둥에서 콘크리트와 강관의 부착응력에 관한 해석적 연구)

  • Park, Sung-Moo;Kang, Joo-Won;Kim, Won-Ho;Lee, Hyung-Seok
    • Journal of Korean Association for Spatial Structures
    • /
    • v.2 no.4 s.6
    • /
    • pp.53-60
    • /
    • 2002
  • An analytic study on the bond stress between steel tube and concrete in concrete filled steel(CFT) rectangular column is presented in this paper. Recently buildings need members which are enhanced durability and ductility. Concrete filled rectangular column system is proposed as alternative plan. In this paper, ABAQUS/Standard Version 5.8 which is identified as usefulness for finite element analysis and has various element library is used. The variables in this study are the location and type of shear-connector. The modeling on contact problem practiced by Contact Pair and Contact Pressure method. In the step of physical bond, it is practiced by Change friction option After yielding of models, analytic results is less than that of experimental results.

  • PDF

An analytical analysis of the pullout behaviour of reinforcements of MSE structures

  • Ren, Feifan;Wang, Guan;Ye, Bin
    • Geomechanics and Engineering
    • /
    • v.14 no.3
    • /
    • pp.233-240
    • /
    • 2018
  • Pullout tests are usually employed to determine the ultimate bearing capacity of reinforced soil, and the load-displacement curve can be obtained easily. This paper presents an analytical solution for predicting the full-range mechanical behavior of a buried planar reinforcement subjected to pullout based on a bi-linear bond-slip model. The full-range behavior consists of three consecutive stages: elastic stage, elastic-plastic stage and debonding stage. For each stage, closed-form solutions for the load-displacement relationship, the interfacial slip distribution, the interfacial shear stress distribution and the axial stress distribution along the planar reinforcement were derived. The ultimate load and the effective bond length were also obtained. Then the analytical model was calibrated and validated against three pullout experimental tests. The predicted load-displacement curves as well as the internal displacement distribution are in closed agreement with test results. Moreover, a parametric study on the effect of anchorage length, reinforcement axial stiffness, interfacial shear stiffness and interfacial shear strength is also presented, providing insights into the pullout behaviour of planar reinforcements of MSE structures.

A Study on Bracket-Adhesive Combinations in Aspect of Shear Bond Strength and Bond Failure (전단접착강도와 탈락양상을 고려한 브라켓-접착제의 선택)

  • Han, Jae-Ik;Son, Woo-Sung
    • The korean journal of orthodontics
    • /
    • v.28 no.6 s.71
    • /
    • pp.955-974
    • /
    • 1998
  • The purpose of the present study was to seek bracket-adhesive combinations which have adequate bond strength with no enamel and bracket fracture. The shear bond strengths were measured, the sites of failure and the enamel damage were investigated and the peripheral sealing and adaptation between enamel surface, bonding adhesive and bracket were evaluated. 240 noncarious human premolars were divided into twenty four groups of ten teeth. Shear bond strengths of each group were determined in an universal testing machine after two days passed and the debonded specimens were inspected to determine the predominant bond failure sites. To evaluate peripheral sealing and adaption between enamel surface, adhesive and bracket, each specimen was cut longitudinally into two halves which included the midsection of the bracket, adhesive and enamel and exmined in scanning electron microscope. Six different types of brackets were bonded to the tooth with four different type of adhesives. Six different types of brackets were Image, Plastic, Crystaline, Fascination, Transcend 2000 and metal bracket and four different adhesives were No-mix, Light-Bond, OrthoLC and Superbond C&B. From this study, it may be concluded that (1) The mean shear bond strength varied from a high of 36.58 Kg (410.07 Kg/$cm^2$) with the Fascination-Light Bond combination group to a low of 8.93 Kg (75.51 Kg/$cm^2$) with theImage-OrthoLC combination group. When using OrthoLC as adhesive, the mean shear bond strength was significantly lower than that of other combination groups, (2) Regardless of adhesives, the mean shear bond strength of Fascination brackets was relatively high whereas Plastic and Image brackets had low shear bonding strength. The shear bond strength of Crystaline bracket and Transcend 2m was relatively equal to or lower than that of metal bracket, (3) There was a correlation between bond strength, enamel damage and bracket fracture. As the shear bond strength was increased, the rate of enamel damage and bracket fracture were increased, (4) The combination groups that use OrthoLC as adhesive were debonded in shear stress without enamel fracture and bracket fracture, whereas the combination groups that use Superbond C&B as adhesive experienced a relative high enamel fracture rate and bracket fracture rate, (5) Peripheral sealing and adaptation between enamel-adhesive-bracket were relatively good when using Light-Bond or No-mix as adhesive. Regardless of adhesives, adaptation between bracket-adhesive were relatively good in Ceramic brackets, (6) The combination groups which had adequate bonding strength with no enamel and bracket fracture were Crystaline-No mix, Crystaline-Light Bond, Crystaline-OrthoLC, metal-No mix, metal-Light Bond and metal-OrthoLC combination groups.

  • PDF

A Study on the Shear Bond Strength of the Reinforced Composite Resin to Dental Alloys (강화형 복합레진과 수종의 치과용 합금간의 전단결합강도에 관한 연구)

  • Kim, Jung-Hee;Jo, In-Ho
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.16 no.2
    • /
    • pp.113-122
    • /
    • 2000
  • The reinforced composte resin as the esthetic operative material continuously has been studied because the porcelain fused metal prosthesis is widely used for its excellent esthetics, rigidity and marginal integrity, but it has low fracture resistance against the tensile strength and stress, attrition of the opposite teeth. The reinforced composite resin is well adapt with the dental alloy but it is low the shear bond strength with the dental alloy vs the porcelain fused metal prosthesis, and then has been studied continuously. The purpose of the study was to examine how metal was the higher shear bond strength among the dental alloy was used to the reinforced composite resin and to find the effect that the particle size of sandblasting influenced the shear bond strength. We built up the reinforced composite resin with 4 mm in diameter, 3 mm in height on circular alloy with 5 mm in diameter, 2 mm in height. Type II gold, type IV gold, and Ag-Pd alloy was used as alloys and $50{\mu}m$, $110{\mu}m$, $250{\mu}m$ of the particle size was sandblasted at each alloy in bonding between alloy and resin. We made 90 secimens of 10 per each group and we measured the shear bond strength using the Instron($M100EC^{(R)}$, Mecmesin Co., England). The obtained results were as follows : 1. In comparison among each alloys, Ag-Pd alloy had the highest shear bond strength and the shear bond strength was decreased significantly in the sequence of the type II gold and type IV gold(P<0.001). 2. In comparison according to the size of sandblasting particle, (1) In Ag-Pd alloy, shear bond strength was decreased in the sequence of $110{\mu}m$, $250{\mu}m$, $50{\mu}m$ and there were significant difference in all the group. (P<0.05) (2) In type II gold, it was decreased in the sequence of $250{\mu}m$, $50{\mu}m$, $110{\mu}m$ and there were significant difference. (P<0.05) (3) In type IV gold, it was decreased in the sequence of $110{\mu}m$, $50{\mu}m$, $250{\mu}m$. There were significant difference between the group of $110{\mu}m$ and $50{\mu}m$, the group of $110{\mu}m$ and 250, but there were no significant difference in the group of $50{\mu}m$ and $250{\mu}m$. 3. The highest shear bond strength according to the size of sandblasting particle was $110{\mu}m$ in Ag-Pd alloy and type IV gold, $250{\mu}m$ in type II gold.

  • PDF