• Title/Summary/Keyword: Shear Behavior

Search Result 3,792, Processing Time 0.027 seconds

Influence of Construction Combination of Rib Stitch and Milan Stitch on Objective Hand Values of Weft Knit (위편성물에서 Rib stitch와 Milan stitch의 편성결합이 태에 미치는 영향)

  • Kwon, Jin;Kwon, Myoung-Sook
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.31 no.1 s.160
    • /
    • pp.68-76
    • /
    • 2007
  • The purpose of this study is to investigate change of mechanical and physical properties, shape behavior and hand value in weft knit when rib stitch and milan stitch are combined. The knit stitches used in this study are plain stitch, half milan rib stitch, milan rib stitch, $2{\times}1$ rib stitch, $2{\times}1$ half milan rib stitch and $2{\times}1$ milan rib stitch. We analyzed physical and mechanical properties(tensile, bending, shear, compression, surface properties, thickness and weight) of the knit stitches and calculated their primary hand value and total hand value through translational formulas using the KES(Kawabata Evaluation System). The results are as follows; In evaluation of mechanical properties and hand values of knit stitches, plain stitch had the highest flexibility and the lowest T.H.V. as women's winter knit wear. Since $2{\times}1$ rib stitch had too high elongation in one direction, although it had the highest T.H.V, it needs to be careful when plain stitch and $2{\times}1$ rib stitch are applied for women's winter knit wear. Since Milan rib stitch and $2{\times}1$ milan rib stitch had high T.H.V. similarly, it is considered that they are suitable for women's winter knit wear. Specially, when Milan stitch is combined with $2{\times}1$ rib stitch, its shape stability and fullness are contained and flexibility is added on it. Therefore, $2{\times}1$ milan rib stitch can be also applied for women's winter knit wear.

Friction and Wear Characteristics of Magneto-rheological Fluid Depend on Surface Coated by DLC and PTFE (DLC와 PTFE표면코팅에 따른 자기유변유체의 마찰 마모 특성)

  • Zhang, Peng;Lee, Kwang-Hee;Lee, Chul-Hee;Choi, JongMyong
    • Tribology and Lubricants
    • /
    • v.31 no.2
    • /
    • pp.62-68
    • /
    • 2015
  • A magnetorheological (MR) fluid is a smart material whose rheological behavior can be controlled by varying the parameters of the applied magnetic field. Because the damping force and shear force of an MR fluid can be controlled using a magnetic field, it is widely employed in many industrial applications, such as in vehicle vibration control, powertrains, high-precision grinding processes, valves, and seals. However, the characteristics of friction caused by iron particles inside the MR fluid need to be understood and improved so that it can be used in practical applications. Surface process technologies such as polytetrafluoroethylene (PTFE) coatings and diamond-like carbon (DLC) coatings are widely used to improve the surface friction properties. This study examines the friction characteristics of an MR fluid with different surface process technologies such as PTFE coatings and DLC coatings, by using a reciprocating friction tester. The coefficients of friction are in the following descending order: MR fluid without any coating, MR fluid with a DLC coating, and MR fluid with a PTFE coating. Scanning electron microscopy is used to observe the worn surfaces before and after the experiment. In addition, energy dispersive X-ray spectroscopy is used to analyze the chemical composition of the worn surface. Through a comparison of the results, the friction characteristics of the MR fluid based on the different coating technologies are analyzed.

Mode II and Mixed Mode Fracture of Single Layer Graphene Sheet (단층 그래핀시트의 모드 II 및 혼합모드 파괴)

  • Nguyen, Minh-Ky;Yum, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.2
    • /
    • pp.105-113
    • /
    • 2014
  • The mode II fracture behavior of a single-layer graphene sheet (SLGS) containing a center crack was characterized with the results of an atomistic simulation and an analytical model. The fracture of zigzag graphene models was analyzed with molecular dynamics and the mode II fracture toughness was found to be $2.04MPa{\sqrt{m}}$. The in-plane shear fracture of a cellular material was analyzed theoretically for deriving the $K_{IIc}$ of SLGS, and FEM results were obtained. Mixed-mode fracture of SLGS was studied for various mode I and mode II ratios. The mixed-mode fracture criterion was determined, and the obtained fracture envelope was in good agreement with that of another study.

An Experimental Study on the Evaluaiton of Elastic-Plastic Fracture Toughness under Mixed Mode I-II-III Loading Using the Optical PSD (PSD를 이용한 혼합모드 하중하에서 탄소성 파괴인성평가에 관한 실험적인 연구)

  • Kim, Hei-Song;Lee, Choon-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.4
    • /
    • pp.1263-1274
    • /
    • 1996
  • In this paper, as elastic-plastic fracture toughness test under mixed mode loading was proposed using a single edge-cracked specimen subjected to bending moment(M), shearing force(F), and twisting moment(T). The J-integral of a crack in the specimen is expressed in the form J=$J_I$+ $J_II$$J_III$, where $J_I$, $J_II$ and $J_III$ are the components of mode I, mode II and mode III deformation, respectively. $J_I$, $J_II$ and $J_III$ can be estimated from M-$\theta$ ($\theta$;crack opening angle), F-U(U; crack shear displacement) and T-$\alpha$ ($\alpha$;crack twisting angle). In order to obtain the the M<-TEX>$\theta$, F-U and T-$\alpha$ diagram inreal time, a new deformaiton gage for mixed mode loading was proposed using the optical position sensing device(PSD). The elastic-plastic fracture toughness test was carried out with an aluminum alloy. The loading apparatus was designed and manufactured for this experiment. For the loading condition of the crack initatio in the mixed mode, the MMT -3(mode I+ mode II+ mode III) has the lowest values out of the all specimens. This implies that MMT-3 is possible of the crackinitation at lower load, if the specimen acts on together with the torque under the same loading condition. An elastic-plastic fracture toughness test using the PSD brings a successful experimentation in measuring the crack deformation(mode I+ mode II+ mode III).

Numerical Analysis of Concrete Lining and Rockbolt Behavior of the Tunnel Associated with Blast-induced Vibration (발파진동으로 인한 터널 콘크리트 라이닝과 록볼트 거동의 수치해석적 분석)

  • Jeon, Sang-Soo;Jang, Yang-Won
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.5
    • /
    • pp.69-78
    • /
    • 2009
  • Since the blast vibration induced by explosives of the powder possibly provide damage of the nearby structures adjacent to the tunnel, the stability of the nearby structures should be estimated. In this study, the stability of the tunnel based on the allowable peak particle velocity of the structures as well as allowable stress of the structures presented in the concrete structural design standard was estimated with respect to the stress of the concrete lining and axial force of the rockbolt during the blasting operation at the ground surface of the pre-existing tunnel. The analyses were carried out by using $FLAC^{2D}$ which is one of the programs developed based on the finite difference method. The bending compressive stress and shear stress of the concrete lining and axial force of the rockbolt were rapidly increased when the blasting operation was conducted near the tunnel.

Seismic performance of mixed column composed of square CFST column and circular RC column in Chinese archaized buildings

  • Xue, Jianyang;Zhou, Chaofeng;Lin, Jianpeng
    • Steel and Composite Structures
    • /
    • v.29 no.4
    • /
    • pp.451-464
    • /
    • 2018
  • This paper presents some quasi-static tests for 4 mixed columns composed of CFST column and RC column. The seismic performance and failure mode were studied under low-cyclic revised loading. The failure mode was observed under different axial compression ratios. The hysteretic curve and skeleton curve were obtained. The effects of axial compression ratio on yield mechanism, displacement ductility, energy dissipation, stiffness and strength attenuation were analyzed. The results indicate that the failure behavior of CFST-RC mixed column with archaized style is mainly caused by bending failure and accompanied by some shear failure. The axial compression ratio performs a control function on the yielding order of the upper and lower columns. The yielding mechanism has a great influence on the ductility and energy dissipation capacity of specimens. Based on the experiment, finite element analysis was made to further research the seismic performance by ABAQUS software. The variable parameters were stiffness ratio of upper and lower columns, axial compression ratio, yielding strength of steel tube, concrete strength and rebar ratio. The simulation results show that with the increase of stiffness ratio of the upper and lower columns, the bearing capacity and ductility of specimens can correspondingly increase. As the axial compression ratio increases, the ductility of the specimen decreases gradually. The other three parameters both have positive effect on the bearing capacity but have negative effect on the ductility. The results can provide reference for the design and engineering application of mixed column consisted of CFST-RC in Chinese archaized buildings.

Experimental study on seismic behavior of reinforced concrete column retrofitted with prestressed steel strips

  • Zhang, Bo;Yang, Yong;Wei, Yuan-feng;Liu, Ru-yue;Ding, Chu;Zhang, Ke-qiang
    • Structural Engineering and Mechanics
    • /
    • v.55 no.6
    • /
    • pp.1139-1155
    • /
    • 2015
  • In this study, a new retrofitting method for improving the seismic performance of reinforced concrete column was presented, in which prestressed steel strips were utilized as retrofitting stuff to confine the reinforced concrete column transversely. In order to figure out the seismic performance of concrete column specimen retrofitted by such prestressed steel strips methods, a series of quasi-static tests of five retrofitted specimens and two unconfined column specimen which acted as control specimens were conducted. Based on the test results, the seismic performance including the failure modes, hysteresis performance, ductility performance, energy dissipation and stiffness degradation of all these specimens were fully investigated and analyzed. And furthermore the influences of some key parameters such as the axial force ratios, shear span ratios and steel strips spacing on seismic performance of those retrofitted reinforced concrete column specimens were also studied. It was shown that the prestressed steel strips provided large transverse confining effect on reinforced concrete column specimens, which resulted in improving the shearing bearing capacity, ductility performance, deformation capacity and energy dissipation performance of retrofitted specimens effectively. In comparison to the specimen which was retrofitted by the carbon fiber reinforced plastics (CFRP) strips method, the seismic performance of the specimens retrofitted by the prestressed steel strips was a bit better, and with much less cost both in material and labor. From this research results, it can be concluded that this new retrofitting method is really useful and has significant advantages both in saving money and time over some other retrofitting methods.

Adhesion Properties of Moisture-Curable Polyurethane Hotmelt (습기경화형 폴리우레탄 핫멜트의 접착물성)

  • Kim, Jae-Beum;Chung, Kyung-Ho;Chun, Young-Sik;Jung, Jin-Soo;Chang, Young-Wook
    • Elastomers and Composites
    • /
    • v.33 no.4
    • /
    • pp.267-273
    • /
    • 1998
  • Isocyante terminated urethane prepolymers were synthesized by the reaction of 4,4'-dimethyl phenyldiisocyanate(MDI) and ester type polyols such as ethylene glycol/ butanediol adipate(EBA), neopentylglycol/butanediol adipate (NBA) and hexanediol adipate (HA) . All of the NCO-terminated urethane prepolymers are solid at room temperature, but they become mobile enough to be disposed onto a substrate upon heating about $80^{\circ}C$. Subsequently, they are solidified and cured through the reaction with moisture. Tensile behavior of the ore-thane hotmelt exhibits characteristic features depending on the type of polyol. The adhesive strength determined by single lap shear joint is higher in order of HA, NBA and EBA based ore thane hotmelt, which can be correlated with the magnitude of breaking energy of the cured films. The failure mode are cohesive for all cases and the adhesive strength increases as the test is performed faster. This indicates that the strength of the adhesive joint is primarily dependent upon the bulk properties of the adhesives.

  • PDF

Mechanical properties of expanded polystyrene beads stabilized lightweight soil

  • Li, Mingdong;Wen, Kejun;Li, Lin;Tian, Anguo
    • Geomechanics and Engineering
    • /
    • v.13 no.3
    • /
    • pp.459-474
    • /
    • 2017
  • To investigate the mechanical properties of Expanded Polystyrene (EPS) Beads Stabilized Lightweight Soil (EBSLS), Laboratory studies were conducted. Totally 20 sets of specimens according to the complete test design were prepared and tested with unconfined compressive test and consolidated drained triaxial test. Results showed that dry density of EBSLS ($0.67-1.62g/cm^3$) decreases dramatically with the increase of EPS beads volumetric content, while increase slightly with the increase of cement content. Unconfined compressive strength (10-2580 kPa) increases dramatically in parabolic relationship with the increase of cement content, while decreases with the increase of EPS beads volumetric content in hyperbolic relationship. Cohesion (31.1-257.5 kPa) increases with the increase of cement content because it is mainly caused by the bonding function of hydration products of cement. The more EPS beads volumetric content is, the less dramatically the increase is, which is a result of the cohesion between hydration products of cement and EPS beads is less than that between hydration products of cement and sand particles. Friction angle ($14.92-47.42^{\circ}$) decreases with the increase of EPS beads volumetric content, which is caused by the smoother surfaces of EPS beads than sand grains. The stress strain curves of EBSLS tend to be more softening with the increase of EPS beads content or the decrease of cement content. The shear contraction of EBSLS increases with the increase of $c_e$ or the decrease of $c_c$. The results provided quantitative relationships between physico-mechanical properties of EBSLS and material proportion, and design process for engineering application of EBSLS.

Preparation of Photocurable Slurry for DLP 3D Printing Process using Synthesized Yttrium Oxyfluoride Powder (합성 불산화 이트륨 분말을 이용한 DLP 3D 프린팅용 광경화성 슬러리 제조)

  • Kim, Eunsung;Han, Kyusung;Choi, Junghoon;Kim, Jinho;Kim, Ungsoo
    • Korean Journal of Materials Research
    • /
    • v.31 no.9
    • /
    • pp.532-538
    • /
    • 2021
  • In this study, a spray dryer is used to make granules of Y2O3 and YF3, and then Y5O4F7 is synthesized following heat treatment of them under Ar gas atmosphere at 600 ℃. Single and binary monomer mixtures are compared and analyzed to optimize photocurable monomer system for DLP 3D printing. The mixture of HEA and TMPTA at 8:2 ratio exhibits the highest photocuring properties and low viscosity with shear thinning behavior. The optimized photocurable monomer and synthesized Y5O4F7 are therefore mixed and applied to printing process at variable solid contents (60, 70, 80, & 85 wt.%) and light exposure times. Under optimal light exposure conditions (initial exposure time: 1.2 s, basic exposure time: 5 s), YOF composites at 60, 70 & 80 wt.% solid contents are successfully printed. As a result of measuring the size of the printed samples compared to the dimensions of the designed bar type specimen, the deviation is found to increase as the YOF solid content increases. This shows that it is necessary to maximize the photocuring activity of the monomer system and to optimize the exposure time when printing using a high-solids ceramic slurry.