• Title/Summary/Keyword: Shear Behavior

Search Result 3,792, Processing Time 0.024 seconds

Transverse Shear Behavior of Thin-Walled Composite Beams with Closed Cross-Sections (폐쇄형 단면을 갖는 박벽 복합재료 보의 전단변형 거동 해석)

  • Park, Il-Ju;Jung, Sung-Nam
    • Composites Research
    • /
    • v.19 no.5
    • /
    • pp.1-6
    • /
    • 2006
  • In this study, a closed-form analysis has been developed for the transverse shear behavior of thin-walled composite beams with closed cross-sections. The shear flow distributions and cross-section stiffness coefficients are derived analytically by using a mixed beam approach. The theory has been applied to single-celled composite box-beams with elastic couplings. The location of the shear center and the effect of transverse shear deformation on the static behavior of composite beams are investigated in the framework of the analysis. The present results are validated against those of a two-dimensional finite element analysis and a good correlation has been obtained for box-beam cases considered in this study.

Shear mechanical behavior of prefabricated and assembled multi-key group stud connectors

  • Liang Fan;Wen Zeng;Wenhao Zhao;Mengting Wang
    • Steel and Composite Structures
    • /
    • v.51 no.1
    • /
    • pp.9-24
    • /
    • 2024
  • In order to study the shear mechanical behavior of prefabricated and assembled multi-key group stud connectors, this paper conducted push-out tests on 10 prefabricated and assembled multi-key group stud connectors, distributed in 5 groups, and detailed the failure modes of each specimen. Based on the finite element software, a total of 22 models of this type of stud connector are established, and validated the finite element models using the push-out tests. Furthermore, the effects of stud diameter, number of key groups, and spacing of key groups on the shear resistance of prefabricated and assembled multi-key group stud connectors are analyzed. Combined with the test and finite element, the force analysis is carried out for the stud and first-pouring and post-pouring concrete. The results show that the spacing and number of key groups have a significant impact on the shear capacity and shear stiffness of the specimen. For a single stud, the shear force is transferred to the surrounding concrete via the stud's root. When the stud is finally cut, the steel and the concrete plate are separated. Under vertical shear force, the top row of studs experiences the highest shear, while the middle row has the least. Based on statistical regression, a formula of assembled multi-key group stud connectors is proposed.

Effect of vertical reinforcement connection level on seismic behavior of precast RC shear walls: Experimental study

  • Yun-Lin Liu;Sushil Kumar;Dong-Hua Wang;Dong Guo
    • Earthquakes and Structures
    • /
    • v.26 no.6
    • /
    • pp.449-461
    • /
    • 2024
  • The vertical reinforcement connection between the precast reinforced concrete shear wall and the cast-in-place reinforced concrete member is vital to the performance of shear walls under seismic loading. This paper investigated the structural behavior of three precast reinforced concrete shear walls, with different levels of connection (i.e., full connection, partial connection, and no connection), subjected to quasi-static lateral loading. The specimens were subjected to a constant vertical load, resulting in an axial load ratio of 0.4. The crack pattern, failure modes, load-displacement relationships, ductility, and energy dissipation characteristics are presented and discussed. The resultant seismic performances of the three tested specimens were compared in terms of skeleton curve, load-bearing capacity, stiffness, ductility, energy dissipation capacity, and viscous damping. The seismic performance of the partially connected shear wall was found to be comparable to that of the fully connected shear wall, exhibiting 1.7% and 3.5% higher yield and peak load capacities, 9.2% higher deformability, and similar variation in stiffness, energy dissipation capacity and viscous damping at increasing load levels. In comparison, the seismic performance of the non-connected shear wall was inferior, exhibiting 12.8% and 16.4% lower loads at the yield and peak load stages, 3.6% lower deformability, and significantly lower energy dissipation capacity at lower displacement and lower viscous damping.

The Behavior between Steel fiber Reinforced Concrete Both Simple and Continuous Beams (강섬유 보강 철근 콘크리트 단순보와 연속보의 거동)

  • 곽계환;김원태;김기순;장화섭
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.167-174
    • /
    • 2003
  • It is absolutely natural to be interested in durability and safety of the structure under shear behavior. To fulfill this desire, a comparison on the shear behavior between steel fiber reinforced concrete both simple and continuous beams is done to use in the field working. Several operations are conducted : First of all, plan for optimal combination is standardized. Second, resistance for shear has been generalized in that it is decided by combination of individual elements. Third, as the fracture of tensile bar leads to destruction of specimen, shear behavior of whole specimen is decided by stress working on tensile bar. It should be generalized for other specimens also. Forth, evidence of the softness of steel fiber reinforced concrete beam by experiment lead to application in the fields. Finally, numeral values of the steel fiber reinforced concrete are analyzed and the result is compared to those of experiments. With these consequences, this study was done for the application to dynamic structures such as bridges and the repair and rehabilitation.

  • PDF

Ring Shear Characteristics of Waste Rock Materials in Terms of Water Leakage (누수유무에 따른 광산폐석의 링전단특성)

  • Jeong, Sueng Won
    • The Journal of Engineering Geology
    • /
    • v.26 no.3
    • /
    • pp.307-314
    • /
    • 2016
  • Shear characteristics of soils can be investigated using various types of shear stress measuring apparatus. Ring shear tests are often applied for examining the residual shear strength under the unlimited deformation. This paper presents drainage-consolidation-shear velocity dependent undrained shear strengths measured in terms of water leakage. A series of ring shear tests were performed under the constant normal stress (50 kPa) and controled shear velocity ranging from 0.01~1 mm/sec under the undrained condition. As a result, undrained shear strengths are dependent on shear velocity. It exhibits that straining hardening behavior is observed for the shear velocity lower than 0.1 mm/sec; however, the strain softening behavior is observed for the shear velocity higher than 0.1 mm/sec. Water leakage can cause the increase in shear stress irrespective of shear velocity. Shear stress increases with increasing amount of water leakage. It is due to the fact that the small grains and water flow out through the rubble edge in the ring shear box. Repetitive saturation and consolidation processes may minimize the error.

Horizontal Shear Behavior of Precast Concrete Slab Track on Bridge (교량구간 프리캐스트 콘크리트 슬래브궤도의 수평전단 거동)

  • Jang, Seung-Yup;Na, Sung-Hoon;Kim, Yu-Bong;Ahn, Ki-Hong
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.998-1001
    • /
    • 2011
  • The concrete track on bridge should be designed to effectively cope with the behavior of the bridge superstructure. For this purpose, in general, shear keys are designed to be installed at a certain intervals on the bridge deck, and the track slab is cast on these shear keys to transfer the load induced by the relative displacement between track and bridge. In this study, to apply the precast concrete slab track on bridge, a shear key structure and its effective installation method are presented. Also, the structural behavior of this shear key has been evaluated by the laboratory mock-up test.

  • PDF

An Investigation on Collapse Behavior of Shear Localization in Elasto- Thermo- Viscoplastic Materials

  • Kim, Hyun-Gyu;Im, Se-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.12
    • /
    • pp.2178-2188
    • /
    • 2006
  • The stress collapse in the formation of shear bands in elasto-thermo-viscoplatic materials is systematically studied within the framework of one-dimensional formulation via analytical and numerical methods. The elastic energy released in a domain is found to play an important role in the collapse behavior of shear localization. A non-dimensional parameter named the stability indicator is introduced to characterize the collapse behavior, with approximate forms of the incremental governing equations. The stability indicator offers useful information regarding the degree of severity of an abrupt change of deformations during the stress collapse. Numerical experiments are carried out to verify the stability indicator by varying material properties.

Shear behavior of RC beams externally strengthened and anchored with CFRP composites

  • Al-Rousan, Rajai Z.
    • Structural Engineering and Mechanics
    • /
    • v.63 no.4
    • /
    • pp.447-456
    • /
    • 2017
  • The primary objective of this paper is to study the effectiveness of anchorage on the performance of shear deficient beams externally strengthened with CFRP composites. The overall behavior of the tested beams loaded up to failure, the onset of the cracking, and crack development with increased load and ductility were described. The use of CFRP composites is an effective technique to enhance the shear capacity of RC beams by using CFRP strips anchored into the tension side and from the top by 15-34% based on the investigated variables. Bonded anchorage of CFRP strips with width of 0.1h-0.3h to the beam resulted in a decrease in average interface bond stress and an increase in the effective strain of the FRP sheet at failure, which resulted in a higher shear capacity as compared with that of the U-wrapped beams without anchorage as well as delay or mitigate the sheet debonding from the concrete surface.

A Nonlinear Analysis of Un-stiffened Steel Shear Wall (무보강 강판 전단벽의 비선형 해석)

  • Yoon, Myung-Ho
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.3 no.2
    • /
    • pp.47-54
    • /
    • 2003
  • A Steel plate shear wall can be used as one of the lateral force resistant elements in buildings. It have many advantages from a structural point of view such as ductility, energy absorption capacity and initial stiffness etc. In this study to grasp the behavior of steel plate shear wall considering material and geometrical non-linearity, the FEM analyses were carried out using ANSYS(ver. 5.6) program. The analysis results were fully discussed and compared with test results to verify the validity of analysis method. The object of this study is to find out analytically the elasto-plastic behavior of un-stiffened steel plate shear wall.

  • PDF

Compression and shear responses of structured clays during subyielding

  • Suebsuk, Jirayut;Horpibulsuk, Suksun;Liu, Martin D.
    • Geomechanics and Engineering
    • /
    • v.18 no.2
    • /
    • pp.121-131
    • /
    • 2019
  • This article discusses the phenomenon of plastic volumetric deformation of naturally structured clays before virgin yielding, i.e., subyielding behavior. A simple approach representing both the compression and shear responses of the clays during subyielding is demonstrated. A new compression model for structured clays based on the theoretical framework of the Structured Cam Clay (SCC) model via incorporation of the subyielding behavior is presented. Two stress surfaces are introduced to distinguish the subyielding and virgin yielding. The hardening and destructuring processes of structured clays under isotropic compression and shear are the focus of this work. The simulations of the compression and shear of eleven natural clays are studied for validation. The proposed work can accurately predict the subyielding behavior of structured clays both qualitatively and quantitatively and can be used for modeling structured clays under compression and shear responses in geological and geotechnical engineering problems.