• Title/Summary/Keyword: Shared Digital Controller

Search Result 7, Processing Time 0.021 seconds

An Analysis of Multi-processor System Performance Depending on the Input/Output Types (입출력 형태에 따른 다중처리기 시스템의 성능 분석)

  • Moon, Wonsik
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.12 no.4
    • /
    • pp.71-79
    • /
    • 2016
  • This study proposes a performance model of a shared bus multi-processor system and analyzes the effect of input/output types on system performance and overload of shared resources. This system performance model reflects the memory reference time in relation to the effect of input/output types on shared resources and the input/output processing time in relation to the input/output processor, disk buffer, and device standby places. In addition, it demonstrates the contribution of input/output types to system performance for comprehensive analysis of system performance. As the concept of workload in the probability theory and the presented model are utilized, the result of operating and analyzing the model in various conditions of processor capability, cache miss ratio, page fault ratio, disk buffer hit ratio (input/output processor and controller), memory access time, and input/output block size. A simulation is conducted to verify the analysis result.

The On-Line Voltage Management and Control Solution of Distribution Systems Based on the Pattern Recognition Method

  • Ko, Yun-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.3
    • /
    • pp.330-336
    • /
    • 2009
  • This paper proposes an on-line voltage management and control solution for a distribution system which can improve the efficiency and accuracy of existing off-line work by collecting customer voltage on-line as well as the voltage compensation capability of the existing ULTC (Under Load Tap Changer) operation and control strategy by controlling the ULTC tap based on pattern clustering and recognition. The proposed solution consists of an ADVMD (Advanced Digital Voltage Management Device), a VMS (Voltage Management Solution) and an OLDUC (On-Line Digital ULTC Controller). An on-line voltage management emulator based on multi-thread programming and the shared memory method is developed to emulate on-line voltage management and digital ULTC control methodology based on the on-line collection of the customer's voltage. In addition, using this emulator, the effectiveness of the proposed pattern clustering and recognition based ULTC control strategy is proven for the worst voltage environments for three days.

Designing of real-time distributed simulator and controller architecture (실시간 분산처리 시뮬레이터 및 제어기 구조 설계)

  • 양광웅;박재현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.744-747
    • /
    • 1997
  • High performance digital computer technology enables the digital computer-based controllers to replace traditional analog controllers used for factory automations. This replacement, however, brings up the side effects caused by discrete quantization and non-real-time execution of control softwares. This paper describes the structure of real-time simulator and controller that can be used for design and verification of real-time digital controllers. The virtual machine concept adopted by real-time simulator make the proposed simulator be independent from the specific hardware platforms. The proposed system can also be used in the loosely coupled distributed environments connected through local area network using real-time message passing algorithm and virtual data table based on the shared memory mechanism.

  • PDF

One-Chip Multi-Output SMPS using a Shared Digital Controller and Pseudo Relaxation Oscillating Technique (디지털 컨트롤러 공유 및 Pseudo Relaxation Oscillating 기법을 이용한 원-칩 다중출력 SMPS)

  • Park, Young-Kyun;Lim, Ji-Hoon;Wee, Jae-Kyung;Lee, Yong-Keun;Song, Inchae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.1
    • /
    • pp.148-156
    • /
    • 2013
  • This paper suggests a multi-level and multi-output SMPS based on a shared digital logic controller through independently operating in each dedicated time periods. Although the shared architecture can be devised with small area and high efficiency, it has critical drawbacks that real-time control of each DPWM generators are impossible and its output voltage can be unstable. To solve these problems, a real-time current compensation scheme is proposed as a solution. A current consumption of the core block and entire block with four driver buffers was simulated about 4.9mA and 30mA at 10MHz switching frequency and 100MHz core operating frequency. Output voltage ripple was 11 mV at 3.3V output voltage. Over/undershoot voltage was 10mV/19.6mV at 3.3V output voltage. The noise performance was simulated at 800mA and 100KHz load regulation. Core circuit can be implemented small size in $700{\mu}m{\times}800{\mu}m$ area. For the verification of proposed circuit, the simulations were carried out with Dong-bu Hitek BCD $0.35{\mu}m$ technology.

Development of Real-Time Distributed Simulator and Controller Based on Virtual Machine (가상머신을 이용한 실시간 분산처리 시뮬레이터 및 제어기)

  • 양광웅;박재현
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.1
    • /
    • pp.115-121
    • /
    • 1999
  • Advanced digital computer technology enables the computer-based controllers to replace the traditional analog controllers used in factory automations. This replacement, however, brings up the side effects caused by the quantization error and non-real-time execution of control software. This paper describes the structure of real-time simulator and controller that can be used for design and verification of real-time digital controllers. The virtual machine concept adopted by the proposed real-time simulator makes the proposed simulator be independent from the specific hardware platforms. The proposed system can also be used in the loosely coupled distributed environments connected through local area network using real-time message passing algorithm and virtual data table based on the shared memory mechanism.

  • PDF

Development of the Broadband PLC Home Controller using JINI Surrogate

  • Kim, Yong-Seok;Kim, Hee-Sun;Lee, Chang-Goo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1563-1567
    • /
    • 2005
  • The Home network system means that information appliances, Home PCs, etc., using wired or wireless network method enable to control and share with peripheral devices such as internet, shared data, a scanner and a printer, and it is networking solution, which intelligent communication will be possible as the system which can do a remote control such as TV Set, refrigerators, air conditioners, DVD players, digital camcorders based on external network using an internet, a potable information terminal and a mobile phone whenever, wherever and freely. In this study, the home network interface solution is used one of the wired network standards, PLC (Power-Line Communication) technology, so we can construct of intelligent home network's home controller without re-build a network at home. On keeping with current waves of thought, we will focus on a home controller development with great interest which is enabled to do an effective managed control, applying intelligent home network technology which can be new paradigm like a cyber apartment.

  • PDF

Ubiquitous-Based Mobile Control and Monitoring of CNC Machines for Development of u-Machine

  • Kim Dong-Hoon;Song Jun-Yeob
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.455-466
    • /
    • 2006
  • This study was an attempt to control and monitor Computerized Numerical Controller (CNC) machines anywhere and anytime for the development of a ubiquitous machine (u-machine). With a Personal Digital Assistant (PDA) phone, the machine status and machining data of CNC machines can be monitored in wired and wireless environments, including the environments of IMT2000 and Wireless LAN. Moreover, CNC machines can be controlled anywhere and anytime. The concept of the anywhere-anytime controlling and monitoring of a manufacturing system was implemented in this study for the purpose of u-manufacturing and u-machines. In this concept, the communication between the CNC controller and the PDA phone was successfully performed anywhere and anytime for the real-time monitoring and control of CNC machines. In addition, the interface between the CNC controller and the developed application module was implemented by Object linking and embedding for Process Control (OPC) and shared CNC memory. For communication, the design of a server contents module within the target CNC was based on a TCP/IP. Furthermore, the client contents module within the PDA phone was designed with the aid of embedded c++ programming for mobile communication. For the interface, the monitoring data, such as the machine status, the machine running state, the name of the Numerical Control (NC) program, the alarm and the position of the stage axes, were acquired in real time from real machines with the aid of the OPC method and by sharing the CNC memory. The control data, such as the start, hold, emergency stop, reserved start and reserved stop, were also applied to the CNC domain of the real machine. CNC machines can therefore be controlled and monitored in real time, anywhere and anytime. Moreover, prompt notification from CNC machines to mobile phones, including cellular phones and PDA phones, can be automatically realized in emergencies.