• 제목/요약/키워드: Shaping Dimensional Error

검색결과 6건 처리시간 0.023초

자유곡면을 가공하는 공작기계 체적오차의 일반화 해석 (A Generalized Analysis of Volumetric Error of a Machine Tool Machining a Sculpture)

  • 고태조
    • 한국생산제조학회지
    • /
    • 제4권3호
    • /
    • pp.39-47
    • /
    • 1995
  • This paper suggests generalize mathematica mode for the benefit of volumetric error analysis of a multi-axis machine tool machining a sculptured surfaces. The volumetric error, in this paper, is defined as a three dimensional error at the cutting point, which is caused by the geometric errors and the kinematic errors of each axis and alignment errors of the cutting tool. The actual cutting position is analyzed based on the form shaping model including a geometric error of the moving carriage, where a form shaping model is derived from the homogeneous transformation matrix. Then the volumetric error is obtained by calculating the position difference between the actual cutting position and the ideal one calculated from a Nonuniform Rational B-Spline named as NURES. The simulation study shows the effectiveness for predicting the behavior of machining error and for the method of error compensation.

  • PDF

음각 점진성형에서 치수정밀도에 영향을 미치는 형상 파라미터 분석 (Analysis of Shaping Parameters Influencing on Dimensional Accuracy in Single Point Incremental Sheet Metal Forming)

  • 강재관;강한수;정종윤
    • 산업경영시스템학회지
    • /
    • 제39권4호
    • /
    • pp.90-96
    • /
    • 2016
  • Incremental sheet forming (ISF) is a highly versatile and flexible process for rapid manufacturing of complex sheet metal parts. Compared to conventional sheet forming processes, ISF is of a clear advantage in manufacturing small batch or customized parts. ISF needs die-less machine alone, while conventional sheet forming requires highly expensive facilities like dies, molds, and presses. This equipment takes long time to get preparation for manufacturing. However, ISF does not need the full facilities nor much cost and time. Because of the facts, ISF is continuously being used for small batch or prototyping manufacturing in current industries. However, spring-back induced in the process of incremental forming becomes a critical drawback on precision manufacturing. Since sheet metal, being a raw material for ISF, has property to resilience, spring-back would come in the case. It is the research objective to investigate how geometrical shaping parameters make effect on shape dimensional errors. In order to analyze the spring-back occurred in the process, this study experimented on Al 1015 material in the ISF. The statistical tool employed experimental design with factors. The table of orthogonal arrays of $L_8(2^7)$ are used to design the experiments and ANOVA method are employed to statistically analyze the collected data. The results of the analysis from this study shows that the type of shape and the slope of bottom are the significant, whereas the shape size, the shape height, and the side angle are not significant factors on dimensional errors. More error incurred on the pyramid than on the circular type in the experiments. The sloped bottom showed higher errors than the flat one.

2차원 천정크레인의 위치 및 이송물의 흔들림제어 (Position and load-swing control of a 2-dimensional overhead crane)

  • 이호훈;조성근
    • 대한기계학회논문집A
    • /
    • 제21권10호
    • /
    • pp.1683-1693
    • /
    • 1997
  • In this paper, a new nonlinear dynamic model is derived for a 2-dimensional overhead crane based on a new definition of 2-degree-of-freedom swing angle, and a new anti-swing control law is proposed for the crane. The dynamic model and control law take simultaneous travel and traverse motions of the crane into consideration. The model is first linearized for small motions of the crane load about the vertical stable equilibrium. Then the model becomes decoupled and symmetric with respect to the travel and traverse axes of the crane. From this result, a decoupled anti-swing control law is proposed based on the linearized model via the loop shaping and root locus methods. This decoupled method guarantees not only fast damping of load-swing but also zero steady state position error with optimal transient response for the 2-dimensional motion of the crane. Finally, the proposed control method is evaluated by controlling the simultaneous travel and traverse motions of a 2-dimensional prototype overhead crane. The effectiveness of the proposed control method is then proven by the experimental results.

LINAC 뇌정의적 방사선 수술시 새로운 최적 선량분포계획 시스템의 개발 (New Techniques for Optimal Treatment Planning for LINAC-based Stereotactic Radiosurgery)

  • 서태석
    • Radiation Oncology Journal
    • /
    • 제10권1호
    • /
    • pp.95-100
    • /
    • 1992
  • LINAC 뇌정위적 방사선 수술은 multiple noncoplanar arc, 3 차원 선량 계산 및 많은 조사 변수들이 사용되기 때문에 간단한 경우에도 최적 선량분포를 얻기 위해서는 많은 시간이 요구된다. 본 논문에서는 실험적 방법과 분석적 방법을 통한 유용한 방법을 제시하기 위한 것으로서, 보다 자세한 방법 및 내용은 앞으로의 발표 논문에서 다루게 된다. 실험적 방법으로 2가지 방법에의하면, 첫번째 방법은 multiple isocenter를 이용하는 것이고, 두번째 방법은 beam's eye view와 field shaping을 이용한 conformal therapy이다. 분석적 방법은 최적 조사조건을 찾기 위하여 computer-aided design optimization 방법을 이용하는 것이다.

  • PDF

Spectrally encapsulated OFDM: Vectorized structure with minimal complexity

  • Kim, Myungsup;Kwak, Do Young;Jung, Jiwon;Kim, Ki-Man
    • ETRI Journal
    • /
    • 제43권4호
    • /
    • pp.660-673
    • /
    • 2021
  • To efficiently use frequency resources, the next 6th generation mobile communication technology must solve the problem of out-of-band emission (OoBE) of cyclic prefix (CP) orthogonal frequency division multiplexing (OFDM), which is not solved in 5th generation technology. This study describes a new zero insertion technique to replace an existing filtering scheme to solve this internal problem in OFDM signals. In the development of the proposed scheme, a precoder with a two-dimensional structure is first designed by generating a two-dimensional mapper and using the specialty of each matrix. A spectral shaping technique based on zero insertion instead of a long filter is proposed, so it can be applied not only to long OFDM symbols, but also very short ones. The proposed method shows that the transmitted signal is completely blocked at the bandwidth boundaries of signals according to the current standards, and it is confirmed that the proposed scheme is ideal with respect to bit error rate (BER) performance because its BER is the same as that of CP-OFDM. In addition, the proposed scheme can transformed into a real time structure through vectorizing process with minimal complexity.

조밀도가 증가된 3차원 십자격자형 신호성상도의 설계 (Design of 3-Dimensional Cross-Lattice Signal Constellations with Increased Compactness)

  • 이상;강석근
    • 한국정보통신학회논문지
    • /
    • 제20권4호
    • /
    • pp.715-720
    • /
    • 2016
  • 본 논문에서는 조밀도가 증가된 3차원 십자격자형 신호성상도의 설계 방법을 제시하고 분석한다. 우수한 성형이득을 얻기 위하여 여기서는 기존 성상도에서 최외곽에 위치한 심볼들을 빈 면과 움푹 들어간 모서리로 이동시킨다. 제시된 신호성상도는 심볼 간 최소 유클리드 거리를 동일하게 유지하면서도 기존 성상도에 비하여 크기에 따라 3~5% 감소된 평균전력과 최대 25%까지 감소된 체적을 가지는 것으로 나타났다. 이와 같은 조밀도의 증가로 인하여 새로운 성상도는 기존 성상도에 비하여 감소된 평균전력을 가진다. 그 결과, 제시된 십자격자형 신호성상도는 디지털 전송시스템의 심볼오류성능을 0.4 [dB] 가량 향상시킬 수 있는 것으로 확인되었다. 따라서 제안된 3차원 격자형 신호성상도는 저전력 및 고신뢰성이 요구되는 디지털 통신시스템에 적합한 것으로 사료된다.