• Title/Summary/Keyword: Shaped-Beam Antenna

Search Result 33, Processing Time 0.025 seconds

An Aperture-coupled Microstrip Shaped-beam Array antenna for the PCS Basestation. (개구 결합 구조를 갖는 PCS 기지국용 마이크로스트립 정형 빔 배열 안테나)

  • 여운식;김광조;강승택;김형동
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.8 no.6
    • /
    • pp.363-644
    • /
    • 1997
  • This paper presents the design and fabrication of a shaped-beam array antenna which will be used for a PCS basestation using structure that is coupled to a microstrip line by an aperture on the interening ground plane. The shaped-beam pattern is obtained by an antenna synthesis method. An array antenna considering the mutual coupling between array elements patches) and a feeding network are designed by CAD tools. The feeding network is designed by using the Wilkinson power divider to obtain the optimized shaped-beam. The designed results are compared with the measured data.

  • PDF

Cavity-backed Two-arm Spiral Antenna with a Ring-shaped Absorber for Partial Discharge Diagnosis

  • Kim, Han-Byul;Hwang, Keum-Cheol;Kim, Hyeong-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.4
    • /
    • pp.856-862
    • /
    • 2013
  • A cavity-backed two-arm spiral antenna for partial discharge diagnosis is presented. The proposed antenna consists of a two-arm Archimedean spiral, a tapered microstrip balun as spiral antenna feed, and a ring-shaped absorber-loaded cavity. The Archimedean spiral antenna is designed for the operating frequency band of 0.3 GHz to 1.5 GHz and fed by the tapered microstrip balun. The cavity is utilized to transform the bidirectional beam into a unidirectional beam, thereby enhancing gain. The ring-shaped absorber is stacked in the cavity to reduce the reflected waves from the cavity wall. The proposed antenna is designed and simulated using CST Microwave Studio. A prototype of the proposed antenna is likewise fabricated and tested. The measured radiation patterns are directional to the positive z-axis, and the measured peak gain is 8.13 dBi at a frequency of 1.1 GHz.

An Aperture-coupled Microstrip Shaped-beam Array Antenna for the PCS Basestation (개구 결합 구조를 갖는 PCS 기지국용 마이크로스트립 정형 빔 배열 안테나)

  • Yeo, Un Sik;Kim, Gwang Jo;Gang, Seung Taek;Kim, Hyeong Dong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.8 no.6
    • /
    • pp.636-636
    • /
    • 1997
  • This paper presents the design and fabrication of a shaped-beam array antenna which will be used for a PCS basestation using structure that is coupled to a microstrip line by an aperture on the intervening ground plane. The shaped-beam pattern is obtained by an antenna synthesis method. An array antenna considering the mutual coupling between array elements(patches) and a feeding network are designed by CAD tools. The feeding network is designed by using the Wilkinson power divider to obtain the optimized shaped-beam. The designed results are compared with the measured data.

Design of Patch Array Antenna for UAV with Horn Reflector (혼 반사기를 적용한 UAV용 패치배열 안테나 설계)

  • Seong-hun Kim;Ji-hwan Ko
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.6
    • /
    • pp.828-834
    • /
    • 2023
  • In this paper, we studied an antenna that forms a wide beam width by applying a horn-shaped reflector to a patch array antenna. To implement a wide beam width, three patches were arranged in each of the four directions on a square microstrip substrate, and a horn-shaped reflector was applied to the rear of the array antenna. Through this structure, the vertical beam pattern formed from the patch was converted to a diagonal direction, and as a result, the beam widths formed in each of the four sectors were added to create a wide beam width close to a hemisphere. The proposed antenna was studied for application to UAV(unmanned aerial vehicle), and the simulation test results confirmed that the 4.5 dBi beam width was 146.8°.

Novel Mobile Satellite Communication Antenna Design Based on Shaped-Reflector (새로운 성형 반사판 기반의 이동 위성 통신 안테나 설계)

  • Jung, Young-Bae;Park, Seong-Ook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.8
    • /
    • pp.826-831
    • /
    • 2008
  • This paper presents hybrid antenna(HA) design based on shaped reflector for mobile satellite communication. HA is composed of a shaped reflector and a feeder having $1{\times}8$ linear phased array, and reflector shaping method is applied for the performance optimization with minimum aperture size. And, in the feeder design, HA has another merit to minimize the manufacturing cost by optimizing the number of element. Proposed HA is designed at Ka-band and can electrically control a beam pattern within ${\pm}3^{\circ}$ in the basic angle of $+45^{\circ}$ in elevation. This antenna is designed to meet ITU-R S.465-5 for beam pattern including side-lobe level.

A Study on Design of the Electrical Down Tilting Antenna with Shaped Beam Pattern (성형 빔 패턴을 갖는 전기적인 다운 틸팅 안테나의 설계에 관한 연구)

  • Lee Chang Eun;Hur Jung
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.1
    • /
    • pp.111-118
    • /
    • 2005
  • The shape of vertical pattern of base station antenna affects greatly quality of the communication of not only a service zone but also adjacent cells and then it is an important point to be considered in designing cell coverage. Currently type of vertical patterns to be applied to base station antenna are divided into five classes. In designing antenna, these five classes are applied solely or compositely according to the environment to be used antenna. In this paper, the dual polarized antenna for base station that is with a continuous electrical down tilting and with a shaped beam pattern, that an upper side lobe is suppressed and a lower null is filled, is designed and fabricated for synthesizing of the shape beant the pattern synthesis methods proposed by R. S. Elliott is used sequentially and for the electrical don tilting, the phased array theory is applied. Measured results show the down tilting range from 0° to 14°, the gain of Min. 13.3dBi and the upper side lobe of Max. -23dB. And we verified that upper side lobe is not to vary greatly and null filling performance is favorable overall.

Monopulse Secondary Surveillance Radar Antenna with Sum/Difference/SLS Channels (합/차/부엽 억제 채널을 갖는 모노펄스 보조 감시 레이더(용) 안테나)

  • Choi, Jong-Hwan;Chae, Hee-Duck;Park, Jong-Kuk;Na, Hyung-Gi
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.7
    • /
    • pp.720-728
    • /
    • 2011
  • In this paper, development of the monopulse secondary surveillance radar antenna which can be used for IFF system is presented. This antenna that is passive linear array is comprised of the row-feeder and several array-elements. The row-feeder provides sum, different and SLS(Sidelobe Supression) channels which are optimized the distribution of the power and phase ratio. The azimuthe sidelobe level of the sum channel beam pattern is -20 dBc or less. The SLS channel covers the sidelobe of the sum-chanel in the whole azimuth angle range. And the difference channel is used to perform the mono-pulse function, improves the detection accuracy in the azimuth direction. Meanwhile, the arrayelement makes shaped beam in the elevation angle, in order to eliminate the clutter and multipath effects from the ground. Performance of the antenna developed is verified by the measurement of S-parameters and far-field beam pattern, and satisfies all of the development specifications well.

Design and Fabrication of a Weathercock-Shaped Double Bandwidth Microstrip Patch Antenna that Combines U-slot and Short-pin for WLAN Systems Systems (WLAN System을 위한 U-slot 및 Short-pin 결합한 바람개비 모양의 이중대역(5.2/5.8GHz) 마이크로스트립 패치 안테나 설계 및 제작)

  • Kim, Soon-Seob;Choi, Young-June;Joo, Young-Dal;Jung, Yoong-Joo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.5
    • /
    • pp.337-343
    • /
    • 2013
  • In this paper, IEEE 802.11 based WLAN(5.2/5.8GHz) wideband Weathercock-shaped microstrip patch antenna was designed and manufactured. The antenna has a size of $17.4{\times}17.4mm^2$ and utilized FR-4 board. The size was minimized for mobility, and Weathercock-shaped U-slot and short-pin was inserted to satisfy adequate bandwidth and double bandwidth resonance characteristics. In addition, the antenna incorporated single both-sided patch, and simulation design optimized the Weathercock-shaped, position of the U-slot and the short-pin, and the length of the patch for the measurement. The manufactured antenna achieved a bandwidth of 695MHz from 5.2~5.8GHz zone(Return loss<-10dB). Achieved a beam width of $81.13^{\circ}$ and $85.43^{\circ}$ for 3-dB beam width of H plane and E p;ane radiation pattern, there was 3.17~4.85dBi gain.

A Study on the Shaped-Beam Antenna with High Gain Characteristic (고이득 특성을 갖는 성형 빔 안테나에 대한 연구)

  • Eom, Soon-Young;Yun, Je-Hoon;Jeon, Soon-Ick;Kim, Chang-Joo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.1 s.116
    • /
    • pp.62-75
    • /
    • 2007
  • This paper describes a shaped-beam antenna for increasing the antenna gain of a radiating element. The proposed antenna structure is composed of an exciting element and a multi-layered disk array structure(MDAS). The stack micro-strip patch elements were used as the exciter for effectively radiating the electromagnetic power to the MDAS over the broadband, and finite metallic disk array elements - which give the role of a director for shaping the antenna beam with the high gain - were finitely and periodically layered onto it. The efficient power coupling between the exciter and the MDAS should be carried out in such a way that the proposed antenna has a high gain characteristic. The design parameters of the exciter and the MDAS should be optimized together to meet the required specifications to meet the required specifications. In this study, a shaped-beam antenna with high gain was optimally designed under the operating conditions with a linear polarization and the frequency band of $9.6{\sim}10.4\;GHz$. Two methods constructed using thin dielectric film and dielectric foam materials respectively were also proposed in order to implement the MBAS of the antenna. In particular, through the computer simulation process, the electrical performance variations of the antenna with the MDAS realized by the thin dielectric film materials were shown according to the number of disk array elements in the stack layer. Two kinds of antenna breadboard with the MDAS realized with the thin dielectric film and dielectric foam materials were fabricated, but experimentation was conducted only on the antenna breadboard(Type 1) with the MDAS realized with the thin dielectric film materials according to the number of disk array elements in the stack layer in order to compare it with the electrical performance variations obtained during the simulation. The measured antenna gain performance was found to be in good agreement with the simulated one, and showed the periodicity of the antenna gain variations according to the stack layer number of the disk array elements. The electrical performance of the Type 1 antenna was measured at the center frequency of 10 GHz. As the disk away elements became the ten stacks, a maximum antenna gain of 15.65 dBi was obtained, and the measured return loss was not less than 11.4 dB within the operating band. Therefore, a 5 dB gain improvement of the Type 1 antenna can be obtained by the MDAS that is excited by the stack microstrip patch elements. As the disk array elements became the twelve stacks, the antenna gain of the Type 1 was measured to be 1.35 dB more than the antenna gain of the Type 2 by the outer dielectric ring effect, and the 3 dB beam widths measured from the two antenna breadboards were about $28^{\circ}$ and $36^{\circ}$ respectively.

Fabrication and measurement of a Weathercock-Shaped Microstrip patch Antenna with T-Slot for 5.25-GHz Band Wireless LAN (5.25GHz 무선 LAN을 위한 T-Slot Weathercock-Shaped 마이크로스트립 패치 안테나 설계 및 제작)

  • Choi Sun-Ho;Jeong Gyey-Teak;Lee Hwa-Choon;Kwak Kyung-Sup
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.12A
    • /
    • pp.1183-1187
    • /
    • 2005
  • In this paper, a weathercock-shaped microstrip patch antenna for application in 5.25GHz band wireless LAN is designed and fabricated. To obtain sufficient bandwidth in VSWR<2, the T-slot is inserted on the patch, the coaxial probe source is used. The measured result of fabricated antenna obtained 350MHz or about $7.62\%$ bandwidth in VSWR<2 referenced to the center frequency, the gain of 5.25${\~}$6.70dBi. The experimental 3-dB beam width is shown to be broad across the pass band in azimuth and elevation at $80.32^{\circ}$ and $83.88^{\circ}$, in several.