• Title/Summary/Keyword: Shape-based extraction

Search Result 266, Processing Time 0.026 seconds

Lip Feature Extraction using Contrast of YCbCr (YCbCr 농도 대비를 이용한 입술특징 추출)

  • Kim, Woo-Sung;Min, Kyung-Won;Ko, Han-Seok
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.259-260
    • /
    • 2006
  • Since audio speech recognition is affected by noise in real environment, visual speech recognition is used to support speech recognition. For the visual speech recognition, this paper suggests the extraction of lip-feature using two types of image segmentation and reduced ASM. Input images are transformed to YCbCr based images and lips are segmented using the contrast of Y/Cb/Cr between lip and face. Subsequently, lip-shape model trained by PCA is placed on segmented lip region and then lip features are extracted using ASM.

  • PDF

Feature curve extraction from point clouds via developable strip intersection

  • Lee, Kai Wah;Bo, Pengbo
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.2
    • /
    • pp.102-111
    • /
    • 2016
  • In this paper, we study the problem of computing smooth feature curves from CAD type point clouds models. The proposed method reconstructs feature curves from the intersections of developable strip pairs which approximate the regions along both sides of the features. The generation of developable surfaces is based on a linear approximation of the given point cloud through a variational shape approximation approach. A line segment sequencing algorithm is proposed for collecting feature line segments into different feature sequences as well as sequential groups of data points. A developable surface approximation procedure is employed to refine incident approximation planes of data points into developable strips. Some experimental results are included to demonstrate the performance of the proposed method.

Feature Extraction of Partial Discharge for Stator Winding of High Voltage Motor (고압전동기 고정자권선의 부분방전 특징추출)

  • Park, Jae-Jun;Kim, Hee-Dong;Lee, Dong-Yoon
    • Proceedings of the KIEE Conference
    • /
    • 2004.11a
    • /
    • pp.112-116
    • /
    • 2004
  • On-line monitoring of fault discharge is an important approach for indicating the condition of electrical insulation of stator winding in high voltage motor. In this paper, several key aspects of on-line monitoring system are discussed, involving the characteristics of fault discharge of stator winding in high voltage motor, spectrum analysis of four simulation fault signals, feature extraction of internal fault discharge from apply voltage to breakdown. The study of the partial discharge activities allows to highlight the ageing stage in the winding fault under test. During the life of the winding insulation fault, the shape of PD signal change relating to the ageing stage. The ageing of stator winding insulation fault of high voltage motor is investigated based on the characteristics of partial discharge pulse distribution and statistical parameters, such as maximum, skewness and kurtosis using discrete wavelet transform coefficients.

  • PDF

Sasang Constitution Classification System by Morphological Feature Extraction of Facial Images

  • Lee, Hye-Lim;Cho, Jin-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.8
    • /
    • pp.15-21
    • /
    • 2015
  • This study proposed a Sasang constitution classification system that can increase the objectivity and reliability of Sasang constitution diagnosis using the image of frontal face, in order to solve problems in the subjective classification of Sasang constitution based on Sasang constitution specialists' experiences. For classification, characteristics indicating the shapes of the eyes, nose, mouth and chin were defined, and such characteristics were extracted using the morphological statistic analysis of face images. Then, Sasang constitution was classified through a SVM (Support Vector Machine) classifier using the extracted characteristics as its input, and according to the results of experiment, the proposed system showed a correct recognition rate of 93.33%. Different from existing systems that designate characteristic points directly, this system showed a high correct recognition rate and therefore it is expected to be useful as a more objective Sasang constitution classification system.

Efficient Content-Based Image Retrieval Method using Shape and Color feature (형태와 칼러성분을 이용한 효율적인 내용 기반의 이미지 검색 방법)

  • Youm, Sung-Ju;Kim, Woo-Saeng
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.4
    • /
    • pp.733-744
    • /
    • 1996
  • Content-based image retrieval(CBIR) is an image data retrieval methodology using characteristic values of image data those are generated by system automatically without any caption or text information. In this paper, we propose a content-based image data retrieval method using shape and color features of image data as characteristic values. For this, we present some image processing techniques used for feature extraction and indexing techniques based on trie and R tree for fast image data retrieval. In our approach, image query result is more reliable because both shape and color features are considered. Also, we how an image database which implemented according to our approaches and sample retrieval results which are selected by our system from 200 sample images, and an analysis about the result by considering the effect of characteristic values of shape and color.

  • PDF

CAD Scheme To Detect Brain Tumour In MR Images using Active Contour Models and Tree Classifiers

  • Helen, R.;Kamaraj, N.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.670-675
    • /
    • 2015
  • Medical imaging is one of the most powerful tools for gaining information about internal organs and tissues. It is a challenging task to develop sophisticated image analysis methods in order to improve the accuracy of diagnosis. The objective of this paper is to develop a Computer Aided Diagnostics (CAD) scheme for Brain Tumour detection from Magnetic Resonance Image (MRI) using active contour models and to investigate with several approaches for improving CAD performances. The problem in clinical medicine is the automatic detection of brain Tumours with maximum accuracy and in less time. This work involves the following steps: i) Segmentation performed by Fuzzy Clustering with Level Set Method (FCMLSM) and performance is compared with snake models based on Balloon force and Gradient Vector Force (GVF), Distance Regularized Level Set Method (DRLSE). ii) Feature extraction done by Shape and Texture based features. iii) Brain Tumour detection performed by various tree classifiers. Based on investigation FCMLSM is well suited segmentation method and Random Forest is the most optimum classifier for this problem. This method gives accuracy of 97% and with minimum classification error. The time taken to detect Tumour is approximately 2 mins for an examination (30 slices).

Footprint extraction of urban buildings with LIDAR data

  • Kanniah, Kasturi Devi;Gunaratnam, Kasturi;Mohd, Mohd Ibrahim Seeni
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.113-119
    • /
    • 2003
  • Building information is extremely important for many applications within the urban environment. Sufficient techniques and user-friendly tools for information extraction from remotely sensed imagery are urgently needed. This paper presents an automatic and manual approach for extracting footprints of buildings in urban areas from airborne Light Detection and Ranging (LIDAR) data. First a digital surface model (DSM) was generated from the LIDAR point data. Then, objects higher than the ground surface are extracted using the generated DSM. Based on general knowledge on the study area and field visits, buildings were separated from other objects. The automatic technique for extracting the building footprints was based on different window sizes and different values of image add backs, while the manual technique was based on image segmentation. A comparison was then made to see how precise the two techniques are in detecting and extracting building footprints. Finally, the results were compared with manually digitized building reference data to conduct an accuracy assessment and the result shows that LIDAR data provide a better shape characterization of each buildings.

  • PDF

Mid-level Feature Extraction Method Based Transfer Learning to Small-Scale Dataset of Medical Images with Visualizing Analysis

  • Lee, Dong-Ho;Li, Yan;Shin, Byeong-Seok
    • Journal of Information Processing Systems
    • /
    • v.16 no.6
    • /
    • pp.1293-1308
    • /
    • 2020
  • In fine-tuning-based transfer learning, the size of the dataset may affect learning accuracy. When a dataset scale is small, fine-tuning-based transfer-learning methods use high computing costs, similar to a large-scale dataset. We propose a mid-level feature extractor that retrains only the mid-level convolutional layers, resulting in increased efficiency and reduced computing costs. This mid-level feature extractor is likely to provide an effective alternative in training a small-scale medical image dataset. The performance of the mid-level feature extractor is compared with the performance of low- and high-level feature extractors, as well as the fine-tuning method. First, the mid-level feature extractor takes a shorter time to converge than other methods do. Second, it shows good accuracy in validation loss evaluation. Third, it obtains an area under the ROC curve (AUC) of 0.87 in an untrained test dataset that is very different from the training dataset. Fourth, it extracts more clear feature maps about shape and part of the chest in the X-ray than fine-tuning method.

An Efficient Shape-Feature Computing Method from Boundary Sequences of Arbitrary Shapes (임의 형상의 윤곽선 시퀀스 정보로부터 형상 특징의 효율적인 연산 방법)

  • 김성옥;김동규;김민환
    • Journal of Korea Multimedia Society
    • /
    • v.5 no.3
    • /
    • pp.255-262
    • /
    • 2002
  • A boundary sequence can be a good representation of arbitrary shapes, because it can represent them simply and precisely. However, boundary sequences have not been used as a representation of arbitrary shapes, because the pixel-based shape-features such as area, centroid, orientation, projection and so forth, could not be computed directly from them. In this paper, we show that the shape-features can be easily computed from the boundary sequences by introducing the cross-sections that are defined as vertical (or horizontal) line segments in a shape. A cross-section generation method is proposed, which generates cross-sections of the shape efficiently by tracing the boundary sequence of the shape once. Furthermore, a boundary sequence extraction method is also proposed, which generates a boundary sequence for each shape in a binary image automatically The proposed methods work well even if a shape has holes. Eventually, we show that a boundary sequence can be used effectively for representing arbitrary shapes.

  • PDF

Hand Biometric Information Recognition System of Mobile Phone Image for Mobile Security (모바일 보안을 위한 모바일 폰 영상의 손 생체 정보 인식 시스템)

  • Hong, Kyungho;Jung, Eunhwa
    • Journal of Digital Convergence
    • /
    • v.12 no.4
    • /
    • pp.319-326
    • /
    • 2014
  • According to the increasing mobile security users who have experienced authentication failure by forgetting passwords, user names, or a response to a knowledge-based question have preference for biological information such as hand geometry, fingerprints, voice in personal identification and authentication. Therefore biometric verification of personal identification and authentication for mobile security provides assurance to both the customer and the seller in the internet. Our study focuses on human hand biometric information recognition system for personal identification and personal Authentication, including its shape, palm features and the lengths and widths of the fingers taken from mobile phone photographs such as iPhone4 and galaxy s2. Our hand biometric information recognition system consists of six steps processing: image acquisition, preprocessing, removing noises, extracting standard hand feature extraction, individual feature pattern extraction, hand biometric information recognition for personal identification and authentication from input images. The validity of the proposed system from mobile phone image is demonstrated through 93.5% of the sucessful recognition rate for 250 experimental data of hand shape images and palm information images from 50 subjects.