• Title/Summary/Keyword: Shape-Separation

Search Result 404, Processing Time 0.031 seconds

A study on the pintle-tip shapes effect of nozzle flow using cold-flow test (핀틀 형상이 노즐 유동에 미치는 영향에 대한 실험적 연구)

  • Kim, Joung-Keun;Park, Jong-Ho;Lee, Jong-Hoon;Jeon, Min-Kyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.10
    • /
    • pp.985-991
    • /
    • 2010
  • The objective of this work was to investigate the pintle-tip shape effect on nozzle flow and thrust by cold flow test. When nozzle throat area was decreased by pintle movement, chamber pressure was increased monotonously but thrust was increased differently according to every pintle-tip shape. At the same chamber pressure and nozzle throat area, thrust of convex pintle-tip shape was mostly larger than that of concave one. Nozzle wall pressure distribution and magnitude of pintle-tip load depended on the pintle-tip shape, pintle position and nozzle throat area.

Modeling and Simulation of a Shape Memory Release Device (형상기억합금을 이용한 분리장치의 모델 및 모사에 관한 연구)

  • Lee, Yeung-Jo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.3
    • /
    • pp.99-108
    • /
    • 2006
  • Aerospace applications use pyrotechnic devices with many different functions. Functional shock, safety, overall system cost issue, and availability of new technologies, however, question the continued use of these mechanisms on aerospace applications. Release device is an important example of a task usually executed by pyrotechnic mechanisms. Many aerospace applications like satellite solar panels deployment or weather balloon separation need a release device. Several incidents, where pyrotechnic mechanisms could be responsible for spacecraft failure, have been encouraging new designs for these devices. The Frangibolt is a non explosive device which comprises a commercially available bolt and a small collar made of shape memory alloy (SMA) that replace conventional explosive bolt systems. This paper presents the modeling and simulation of Frangiblot by the change of bolt size and notch geometry. This analysis may contribute to improve the Frangibolt design.

Design of sinusoidal shape channel PCHEs for supercritical LNG based on CFD simulation (CFD 시뮬레이션 기반 초임계 LNG용 사인함수 PCHE 설계)

  • Fan, Jinxing;Yeom, Eunseop
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.3
    • /
    • pp.69-76
    • /
    • 2021
  • Printed circuit heat exchanger (PCHE) is a compact heat exchanger with good heat transfer performance, high structure integrity, and reliability over a wide range of temperatures and pressures. Instead of the traditional zigzag and straight shape channel, the sinusoidal shape channel was adopted in this study to investigate the relation of thermal-hydraulic performance and waviness factors (period and amplitude). The local flow characteristics and the heat flux distribution were compared to verify the effects of period and amplitude on heat transfer performance. As the period of channel becomes shorter, the rapid change of the flow direction can produce high flow separation around the corner leading to the disturbance of the boundary layer opposite wall. The nonuniform distribution of flow velocity appeared around the corner positions can promote fluid mixing and lead to higher thermal performance. An evaluation index was used to compare the comprehensive performance of PCHE considering the Nusselt number and Fanning factor. Based on the simulation results, the optimal design parameters of PCHE channel shape were found that the channel with an equivalent bending angle of 15° offers the highest heat flux capacity.

Analysis of Flood Characteristics at Confluence by Lateral Inflow (횡유입에 의한 합류부 홍수특성 분석)

  • Choi, Hung-Sik;Cho, Min-Suk;Park, Young-Seop
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.6 no.1 s.20
    • /
    • pp.59-68
    • /
    • 2006
  • Flow separation of recirculation zone by increasing of flow and change of its direction at confluence results in backwater due to conveyance reduction. The hydraulic characteristics of flow separation are analysed by experimental results of flow ratios of tributary and main streams and approaching angles. The boundary of flow separation by dimensionless length and width is defined by the streamline of zero and this definition agrees well to the existing investigation. Because flow separation doesn't appear in small flow ratio and approaching angle of $30^{\circ}$, the equation of flow separation with flow ratio and approaching angle is provided. In flow separation consideration and comparing with previous results, the existing equations of dimensionless length and width ratios by function of approaching angle, flow ratio, and downstream Froude number are modified and also contraction coefficient and shape factor are analysed. Dimensionless length and width ratios are proportional to the flow ratio and approaching angle. In analysis of water surface profiles, the backwater effects are proportional to the flow ratio and approaching angle and the magnitude at outside wall is greater than that of inside wall of main stream. The length, $X_l$ from the beginning of confluence to downstream of uniform flow, where the depth is equal to uniform depth, is characterized by width of stream, flow ratio, approaching angle, and contraction coefficient. The ratios between maximum water depth by backwater and minimum depth at separation are analysed.

A Study on the Effect of Fracture Delay of Intelligent FRP by Transparent Photoelastic Experimental Method (투과형 광탄성 실험법에 의한 지능성 FRP의 파괴지연 효과에 관한 연구)

  • Lee, Hyo-Jae;Hwang, Jae-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.11 s.170
    • /
    • pp.1904-1911
    • /
    • 1999
  • The most effective material in the shape memory alloy(SMA) is the TiNi alloy, because its shape recovery characteristics are very excellent. We molded the composite material with shape memory function. The fiber of it is $Ti_{50}-Ni_{50}$ shape memory alloy and matrix of it is epoxy resin(Araldite B41, Hardner HT903. Ciba Geigy), its adhesive and optical sensitivity are very excellent. It was assured that the composite material could be used as model material of photoelastic experiment for intelligent materials or structures. In this research, the composite material with shape memory function is used as model material of photoelastic experiment. Photoelastic experimental hybrid method is developed in this research, it is assured that it is useful on the obtaining stress intensity factor and the separation of stress components from only isochromatic data. The measuring method of stress intensity factor of intelligent material by photoelastic experiment is introduced. In the mode I state, we can know that stress intensity factors are decreased more than 50% of stress intensity factor of room temperature when temperature of fiber is greater than 4$0^{\circ}C$, prestrain greater than 5% and fiber volume ratio greater than 0.42% and that stress intensity factors are decreased by 100% when fiber volume ratio is greater than 0.84%, prestrain greater than 5% and temperature greater than 60 $^{\circ}C$.

The Interpretation of Separation Mechanism of Ridge-Cut Explosive Bolt Using Simulation Programs (해석프로시져를 이용한 리치컷형 폭발볼트 분리기구 해석)

  • Lee, Yeung-Jo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.2
    • /
    • pp.102-114
    • /
    • 2004
  • The present work has been developed the interpretation processor including the behavior of material failure and the separation phenomena under transient dynamic loading (the operation of explosive bolt) using AUTODYN V4.3, SoildWork 2003 and TrueGrid V2.1 programs. It has been demonstrated that the interpretation in ridge-cut explosive bolt under dynamic loading condition should be necessary to the appropriate failure model and the basic stress of bolt failure is the principal stress. The use of this interpretation processor developing the present work could be extensively helped to design the shape and the amount of explosives in the explosive bolt having a complex geometry. It is also proved that the interpretation processor approach is an accurate and effective analysis technique to evaluate the separation mechanism in explosive bolts.

Separation of Bacteria Using Capillary Electrophoresis (모세관 전기영동을 이용한 박테리아의 분리)

  • Moon, Byoung-Geoun;Choi, Kyu-Seong;Lee, Sang-Chun;Kim, Yong-Seong
    • Journal of the Korean Chemical Society
    • /
    • v.48 no.2
    • /
    • pp.144-150
    • /
    • 2004
  • Various experimental factors that affect the separation of bacteria were investigated using capillary electrophoresis. At different buffer concentrations, gram-positive bacteria and gram-negative bacteria showed somewhat different migration behavior under high electric filed. The separation efficiency was also investigated as a function of concentration of bacterium injected into the capillary. In order to separate bacteria as the difference of size and shape, water soluble polymers such as poly(ethylene)oxide (PEO), polyvinylpyirrolidone (PVP), and dextran were studied. PEO, which is more flexible and has lower steric hinderance, showed the best separation efficiency. The mixed bacteria sample of Micrococcus lysodeikticus as gram-positive bacteria and Aerobacter aerogenes as gram-negative bacteria were successfully analyzed with PEO.

Spatial Gap Estimation for Word Separation in Handwritten Legal Amounts on BAnk Check (필기체 수표 금액 문장에서의 단어 분리를 위한 공간적 간격 추정)

  • Kim In-cheol;Kim Kyoung-min
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.5
    • /
    • pp.1096-1101
    • /
    • 2005
  • An efficient method of estimating the spatial gaps between the connected components has been prposed to separatethe individual words from a handwritten legal amount on bank check. Owing to the inherent problem of underestimation or overestimation, the previous gap measures have much difficulty in being applied to the legal amounts that usually include the great shape variability by writer's unconstrained writing style and touching or irregular gaps between words by space limitation. In order to alleviate such burden and improve word separation performance, we have developed a modified version of each distance measure. Through a series of word separation experiments, we found that the modified distance measures show a better performance with over $2-3\%$ of the word separation rate than their corresponding original distance measures.

Characteristics of Particle Separation in Suspension using an Ultrasonic Standing Wave

  • Shin, Beom-Soo;Danao, Mary-Grace C.
    • Journal of Biosystems Engineering
    • /
    • v.37 no.2
    • /
    • pp.113-121
    • /
    • 2012
  • Purpose: Particle separation in solution is one of important process in a unit operation as well as in an extract preparation for biosensors. Contrary to centrifuge-type of mesh-type filter, using an ultrasonic standing wave make the filtering process continuous and free from maintenance. It is needed to investigate the characteristics of particle movement in the ultrasonic standing wave field. Methods: Through the computer simulation the effects of major design and driving parameters on the alignment characteristics of particles were investigated, and a cylindrical chamber with up-stream flow type was devised using two circular-shape PZTs on both sides of the chamber, one for transmitting ultrasonic wave and the other for just reflecting it. Then, the system performance was experimentally investigated as well. Results: The speed of a particle to reach pressure-node plane increased as the acoustic pressure and size of particle increased. The maximum allowable up-stream flow rate could be calculated as well. As expected, exact numbers of pressure-node planes were well formed at specific locations according to the wavelength of ultrasonic wave. As the driving frequency of PZT got close to its resonance frequency, the bands of particles were observed clearer, which meant the particles were trapped into narrower space. Higher excitation voltages to the PZT produced a greater acoustic force with which to trap particles in the pressure-node planes, so that the particles gathered could move upwards without disturbing their alignments even at a higher inlet flow rate. Conclusions: This research showed the feasibility of particle separation in solution in the continuous way by an ultrasonic standing wave. Further study is needed to develop a device to collect or harvest those separated particles.

Ambient modal identification of structures equipped with tuned mass dampers using parallel factor blind source separation

  • Sadhu, A.;Hazraa, B.;Narasimhan, S.
    • Smart Structures and Systems
    • /
    • v.13 no.2
    • /
    • pp.257-280
    • /
    • 2014
  • In this paper, a novel PARAllel FACtor (PARAFAC) decomposition based Blind Source Separation (BSS) algorithm is proposed for modal identification of structures equipped with tuned mass dampers. Tuned mass dampers (TMDs) are extremely effective vibration absorbers in tall flexible structures, but prone to get de-tuned due to accidental changes in structural properties, alteration in operating conditions, and incorrect design forecasts. Presence of closely spaced modes in structures coupled with TMDs renders output-only modal identification difficult. Over the last decade, second-order BSS algorithms have shown significant promise in the area of ambient modal identification. These methods employ joint diagonalization of covariance matrices of measurements to estimate the mixing matrix (mode shape coefficients) and sources (modal responses). Recently, PARAFAC BSS model has evolved as a powerful multi-linear algebra tool for decomposing an $n^{th}$ order tensor into a number of rank-1 tensors. This method is utilized in the context of modal identification in the present study. Covariance matrices of measurements at several lags are used to form a $3^{rd}$ order tensor and then PARAFAC decomposition is employed to obtain the desired number of components, comprising of modal responses and the mixing matrix. The strong uniqueness properties of PARAFAC models enable direct source separation with fine spectral resolution even in cases where the number of sensor observations is less compared to the number of target modes, i.e., the underdetermined case. This capability is exploited to separate closely spaced modes of the TMDs using partial measurements, and subsequently to estimate modal parameters. The proposed method is validated using extensive numerical studies comprising of multi-degree-of-freedom simulation models equipped with TMDs, as well as with an experimental set-up.