• Title/Summary/Keyword: Shape-Generation

Search Result 1,004, Processing Time 0.03 seconds

Finite Element Analysis and Formability Evaluation for Dimple Forming with Thin Sheet Metal (박판 딤플 성형을 위한 유한요소해석 및 성형성 평가)

  • Heo, Seong-Chan;Seo, Young-Ho;Ku, Tae-Wan;Song, Woo-Jin;Kim, Jeong;Kang, Beom-Soo
    • Transactions of Materials Processing
    • /
    • v.16 no.8
    • /
    • pp.621-628
    • /
    • 2007
  • Nowadays, Exhaust Gas Recirculation(EGR) Cooler is one of the most favorite systems for reducing the generation amount of $NO_x$ and other particle materials from vehicles burning diesel as fuel. Efficiency of the system is mainly dependent on its heat transfer efficiency and this ability is affected by net heat transferring area of the system. For that reason, several types of heat transfer tube such as dimple, wrinkle and spiral types that have large net area are used. However, it is difficult to manufacture the rectangular tube with dimpled type structure because it experiences too much strain around the rectangular tube surface during the forming process. For that reason, in this study, numerical simulation for forming process of non-symmetric dimple shape on a thin sheet metal was carried out. Furthermore, theoretical forming limit curves(forming limit diagram, forming limit stress diagram) were proposed as criteria of formability evaluation. From the results of finite element simulation in view of stress and strain distribution, it is found that the designed process has robustness and feasibility to safely manufacture the dimpled rectangular tube.

A study on design and aerodynamic characteristics of a spiral-type wind turbine blade (스파이럴형 풍력터빈 블레이드의 설계 및 공력특성에 관한 연구)

  • Lu, Qian;Li, Qiang;Kim, Yoon-Kee;Kim, Kyung-Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.10 no.1
    • /
    • pp.27-33
    • /
    • 2012
  • This paper describes a new design of small-scale horizontal wind blade, called spiral wind turbine blade. Theoretical and numerical approaches on the prediction of aerodynamic performance of the blade have been conducted. A theoretical equation is successfully derived using the angular momentum equation to predict aerodynamic characteristics according to the design shape parameters of spiral blade. To be compared with the theoretical value, a numerical simulation using ANSYS CFX v12.1 is performed on the same design with the theoretical one. Large scale tip vortex is captured and graphically presented in this paper. The TSR-$C_p$ diagram shows a typical parabolic relation in which the maximum efficiency of the blade approximately 25% exists at TSR=2.5. The numerical simulation agrees well with that of the theoretical result except at the low rotational speed region of 0~20 rad/s.

CFD Analysis on a Tall Building Augmented Wind Turbine (풍력발전기가 설치된 고층빌딜에 대한 전산유체역학적 고찰)

  • Jeon, Wan-Ho;Yoon, Seong-Wook;Kim, Wook;Cho, Jang-Hyung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.418-421
    • /
    • 2009
  • Renewable energy or green energy is a hot issue in theses days. Since wind resource can be endlessly supplied by nature, researchers and common people are interested in study how to use that resource at home or company. Especially, many architects have tried to integrate wind power generator for a part of building. So in this paper, three buildings installed wind power turbine are targed to CFD analysis and these buildings are Bahrain trade center, Discovery tower, and Pearl river tower. Bahrain trade center is the first builidng installed real wind turbine, Discovery tower is constructing at Texas, and Pearl river tower is designed and proved by china researchers. These buildings have very different type of wind power turbine and each turbine has different conditions for best power generation. Therefor this paper will focus on characteristic shape of buildings, wind power turbine type, and expected purpose of construction. Moreover, CFD analysis will show wind flow pattern and wind speed while wind is passing through wind turbine of three tall buildings. CFD analysis for three buildings make comparison the wind flow patterns with experimental result.

  • PDF

Generation of the FE Model of a Korean Young Male Adults and Determination of Mechanical Properties for Engineering Analysis (한국 성인 남성의 공학 해석용 정밀 유한 요소 모델 생성과 뼈의 물성 획득에 관한 연구)

  • Yoo, Seung-Hyun;Kim, Hak-Kyun;Kim, Jong-Bum
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.2
    • /
    • pp.115-121
    • /
    • 2006
  • Geometries, boundary renditions, loading renditions and mechanical properties are essential for finite element analysis. However it is a very difficult task to obtain In-vivo geometry and mechanical properties of human body. In this study totally 38 kinds of inner organs are segmented using MRI of young male with Korean standard body shape to make a finite element model. And RUS has been used to acquire anisotropic elasticity matrix of the femoral head.

Flow Behavior of Thin Polymer Film by various patterns in Spinning Coating Process of Blu-ray Disc Cover layer (블루레이 디스크의 커버레이어 스핀 코팅 시 다양한 패턴에 따른 최적화된 폴리머 거동에 관한 연구)

  • Cho K. C.;Park Y. H.;Kim H. Y.;Kim B. H.;Lee B. G.;Son S. G.;Shin H. K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.467-471
    • /
    • 2005
  • In this paper, experimental methods about the flow behavior of thin polymer film by various edge patterns in the spin coating process for stable cover layer coating of a blu-ray disc is described. The blu-ray disc, a next-generation optical disc format over 25GB, consists of a 1.1m thick substrate and a 0.1mm tick cover layer. Generally, cover layer on the blu-ray disc is made by the polymer spin coating process. However, it is hard to secure sufficient coating uniformity around the rim on the cover layer. In order to get the uniform thickness deviation and to minimize the bead around the rim, the edge of the disc substrate can be modified into various patterns, such as normal plain, trench, step and chamfer pattern, etc, around the rim on the disc and experimented with various parameters, such as surface tension, viscosity, coating time, temperature and rotation speed, etc. And the optimal shape of the rim was tried to get by 3 dimensional computer simulation of the polymer expulsion process.

  • PDF

Low Cost, Large Area Nanopatterning via Directed Self-Assembly

  • Kim, Sang-Uk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.24-25
    • /
    • 2011
  • Molecular self-assembly has several advantages over other nanofabrication methods. Molecular building blocks ensure ultrafine pattern precision, parallel structure formation allows for mass production and a variety of three-dimensional structures are available for fabricating complex structures. Nevertheless, the molecular interaction for self-assembly generally relies on weak forces such as van der Waals force, hydrogen bonding, or hydrophobic interaction. Due to the weak interaction, the structure formation is usually slow and the degree of ordering is low in a self-assembled structure. To promote self-assembly, directed assembly methods employing prepatterned substrates or external fields have been developed and gathered a great deal of technological attention as a next generation nanofabrication process. In this presentation a variety of directed assembly methods for soft nanomaterials including block copolymers, peptides and carbon nanomaterials will be introduced. Block copolymers are representative self-assembling materials extensively utilized in nanofabrication. In contrast to colloid assembly or anodized metal oxides, various shapes of nanostructures, including lines or interconnected networks, can be generated with a precise tunability over their shape and size. Applying prepatterned substrates$^{1,2}$ or introducing thickness modulation$^3$ to block copolymer thin films allowed for the control over the orientational and positional orderings of self-assembled structures. The nanofabrication processes for metals, semiconductors$^4$, carbon nanotubes$^{5,6}$, and graphene$^{6,7}$ templating block copolymer self-assembly will be presented.

  • PDF

Properties of Temperature and Brightness Applied on Frequency in Electrodeless Fluorescent Lamp (무전극 형광램프의 주파수 변화에 따른 온도 및 광속 특성)

  • Lee, Joo-Ho;Choi, Gi-Seung;Kim, Nam-Goon;Park, Noh-Joon;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.1273-1274
    • /
    • 2006
  • In recent, it became necessary to develop the technology about electrodeless fluorescent lamp according to demand of the electrodeless fluorescent lamp system that used higher efficiency and advantage of long lifetime. Inductively coupled plasma is commonly used for electrodeless lamp due to its ease of plasma generation. An electric power efficiency of electrodeless fluorescent lamp has big relative property of gas in lamp, gas pressure, lamp formation, ingredients of magnetic substance and shape and action frequency etc. We used magnetic substance that open self-examination material of electrodeless fluorescent lamp antenna. Ferrite that is used in this experiment was Mn-Zn type. We have examined temperature and flux characteristic by frequency. Considering using frequency 2.65[MHz], Frequency was changed from 2.05[MHz] to 3.05[MHz] to recognize flux and temperature change of lamp. I used LMS(Lighting Measurement System) to measure flux and IR Camera to measure temperature of lamp.

  • PDF

An Experimental Study on the Leakage Characteristics and Durability Evaluation of an LPLi Injector (LPLi 인젝터의 누설특성 및 내구평가에 관한 실험적 연구)

  • Choi, Young;Kim, Chang-Up;Oh, Seung-Mook;Kang, Kern-Yong
    • Journal of ILASS-Korea
    • /
    • v.12 no.4
    • /
    • pp.204-210
    • /
    • 2007
  • The worldwide energy problem and global warming cause the need of alternative fuels which feature low carbon-dioxide emission and another energy source. Liquefied Petroleum Gas (LPG) is one of the alternative fuels widely used as domestic and transportational fuel. The third generation LPLi fuel supply system has merits in the increase of engine power and low emissions. The injectors used in LPLi system should overcome a leakage problem and satisfy the durability conditions. Therefore, 1000 hour durability test of the injectors was carried out throughout this research. First, the spray pattern and the penetration length of the selected injectors is graphically shown. Next, the leakage amount with respect to the injection cycle is introduced. Finally, the shapes of nozzle holder and nozzle tip after durability test was investigated by analyzing the microscopic image of the injector tip. The variation in the shape of nozzle tip mainly due to the residue of rubber materials is found to be the reason for leakage.

  • PDF

Generation of Graded Index Profile of Poly(methyl methacrylate) by a Photochemical Reaction

  • Yun, Hyun-Chu;Im, Sang-Hyuk;Suh, Duck-Jong;Park, O-Ok;Kwon, Moo-Hyun
    • Macromolecular Research
    • /
    • v.11 no.4
    • /
    • pp.236-240
    • /
    • 2003
  • Fabrication of a graded index profile was possible via photochemical reaction of cinnamoyl groups with 350 nm wavelength UV light to form crosslinked structures. Such structural change may induce the change in the refractive index. In order to generate graded index profile in the PMMA polymer optical fiber (POF) with cinnamoyl groups by photochemistry, a methyl methacrylate monomer containing a cinnamoyl functional group in the side chain were prepared. This monomer was then copolymerized with methyl methacrylate with various compositions not only to utilize advantages of poly(methyl methacrylate) but also to overcome the drawbacks of the cinnamate homopolymer. Changes of refractive indices were investigated with various contents of cinnamoyl group and varying irradiation time. Large change in the refractive index (${\Delta}{\approx}0.01$) and its proper profile shape ($g{\approx}2.2$) can be obtained by changing irradiation time.

ASSESSMENT OF WALL-THINNING IN CARBON STEEL PIPE BY USING LASER-GENERATED GUIDED WAVE

  • Kim, Do-Youn;Cho, Youn-Ho;Lee, Joon-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.42 no.5
    • /
    • pp.546-551
    • /
    • 2010
  • The objective of this research is to estimate the crack location and size of a carbon steel pipe by using a laser ultrasound guided wave for the wall thinning evaluation of an elbow. The wall thinning of the carbon steel pipe is one of the most serious problems in nuclear power plants, especially the wall thinning of the carbon steel elbow caused by Flow-Accelerated Corrosion (FAC). Therefore, a non-destructive inspection method of elbow is essential for the nuclear power plants to operate safely. The specimens used in this study were carbon steel elbows, which represented the main elements of real nuclear power plants. The shape of the wall thinning was an oval with a width of 120mm, a length of 80mm, and a depth of 5mm. The L(0,1) and L(0,2) modes variation of the ultrasound guided wave signal is obtained from the response of the laser generation/air-coupled detection ultrasonic hybrid system represent the characteristics of the defect. The trends of these characteristics and signal processing were used to estimate the size and location of wall thinning.