• Title/Summary/Keyword: Shape sorting

Search Result 52, Processing Time 0.019 seconds

Influence of Microcracks in Geochang Granite on Brazilian Tensile Strength (거창화강암의 미세균열이 압열인장강도에 미치는 영향)

  • Park, Deok-Won
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.3
    • /
    • pp.193-208
    • /
    • 2021
  • The characteristics of the microcrack lengths(①), microcrack spacings(②) and Brazilian tensile strengths(③) related to the six directions of rock cleavages(H2~R1) in Geochang granite were analyzed. First, the 18 cumulative graphs for the above three major factors representing unique characteristics of the rock cleavages were made. Through the general chart for these graphs classified into three planes and three rock cleavages, the 28 parameters on the length, spacing and Brazilian tensile strength have been determined. The results of correlation analysis among these parameters are summarized as follows. Second, the above parameters were classified into six groups(I~VI) according to the sorting order on the magnitude of parameter values among three rock cleavages and three planes. The values of parameters belonging to group I and II are in order of R(rift) < G(grain) < H(hardway) and H < G < R. The values of the 8 parameters on the length of line(os2, 𝚫s, 𝚫L and oSmean), the exponent(λLmean and λSmean), the slope(amean) and the anisotropy coefficient (Anmean) are in order of R < G < H and H'(hardway plane) < G'(grain plane) < R'(rift plane). Third, the noticeable differences in distribution patterns among the six types of charts for three planes and three rock cleavages are as follows. From the chart for three planes, the values of 𝚫L, 𝚫s and 𝚫σt, corresponding to the distance between two points where the two fitting lines meet on the X-axis, increase in the order of R' < H' < G'. In particular, the two graphs of R2 and G2 related to the length and Brazilian tensile strength are almost parallel to each other and show the distribution characteristics of hardway plane. Among the graphs related to the Brazilian tensile strength, the overall shape for hardway plane is similar to that for grain. From the chart for three rock cleavages, the slopes of the graphs related to the length increase in the order of R < G < H, while those of the graphs related to the spacing and Brazilian tensile strength decrease in the order of R < G < H. Lastly, the characteristics of variation among the six rock cleavages, the three planes and the three rock cleavages were visualized through the correlation chart among the above parameters from this study.

A Study on the Dimensions, Surface Area and Volume of Grains (곡립(穀粒)의 치수, 표면적(表面積) 및 체적(體積)에 관(關)한 연구(硏究))

  • Park, Jong Min;Kim, Man Soo
    • Korean Journal of Agricultural Science
    • /
    • v.16 no.1
    • /
    • pp.84-101
    • /
    • 1989
  • An accurate measurement of size, surface area and volume of agricultural products is essential in many engineering operations such as handling and sorting, and in heat transfer studies on heating and cooling processes. Little information is available on these properties due to their irregular shape, and moreover very little information on the rough rice, soybean, barley, and wheat has been published. Physical dimensions of grain, such as length, width, thickness, surface area, and volume vary according to the variety, environmental conditions, temperature, and moisture content. Especially, recent research has emphasized on the variation of these properties with the important factors such as moisture content. The objectives of this study were to determine physical dimensions such as length, width and thickness, surface area and volume of the rough rice, soybean, barley, and wheat as a function of moisture content, to investigate the effect of moisture content on the properties, and to develop exponential equations to predict the surface area and the volume of the grains as a function of physical dimensions. The varieties of the rough rice used in this study were Akibare, Milyang 15, Seomjin, Samkang, Chilseong, and Yongmun, as a soybean sample Jangyeobkong and Hwangkeumkong, as a barley sample Olbori and Salbori, and as a wheat sample Eunpa and Guru were selected, respectively. The physical properties of the grain samples were determined at four levels of moisture content and ten or fifteen replications were run at each moisture content level and each variety. The results of this study are summarized as follows; 1. In comparison of the surface area and the volume of the 0.0375m diameter-sphere measured in this study with the calculated values by the formula the percent error between them showed least values of 0.65% and 0.77% at the rotational degree interval of 15 degree respectively. 2. The statistical test(t-test) results of the physical properties between the types of rough rice, and between the varieties of soybean and wheat indicated that there were significant difference at the 5% level between them. 3. The physical dimensions varied linearly with the moisture content, and the ratios of length to thickness (L/T) and of width to thickness (W/T) in rough rice decreased with increase of moisture content, while increased in soybean, but uniform tendency of the ratios in barley and wheat was not shown. In all of the sample grains except Olbori, sphericity decreased with increase of moisture content. 4. Over the experimental moisture levels, the surface area and the volume were in the ranges of about $45{\sim}51{\times}10^{-6}m^2$, $25{\sim}30{\times}10^{-9}m^3$ for Japonica-type rough rice, about $42{\sim}47{\times}10^{-6}m^2$, $21{\sim}26{\times}10^{-9}m^3$ for Indica${\times}$Japonica type rough rice, about $188{\sim}200{\times}10^{-6}m^2$, $277{\sim}300{\times}10^{-9}m^3$ for Jangyeobkong, about $180{\sim}201{\times}10^{-6}m^2$, $190{\sim}253{\times}10^{-9}m^3$ for Hwangkeumkong, about $60{\sim}69{\times}10^{-6}m^2$, $36{\sim}45{\times}10^{-9}m^3$ for Covered barley, about $47{\sim}60{\times}10^{-6}m^2$, $22{\sim}28{\times}10^{-9}m^3$ for Naked barley, about $51{\sim}20{\times}10^{-6}m^2$, $23{\sim}31{\times}10^{-9}m^3$ for Eunpamill, and about $57{\sim}69{\times}10^{-6}m^2$, $27{\sim}34{\times}10^{-9}m^3$ for Gurumill, respectively. 5. The increasing rate of surface area and volume with increase of moisture content was higher in soybean than other sample grains, and that of Japonica-type was slightly higher than Indica${\times}$Japonica type in rough rice. 6. The regression equations of physical dimensions, surface area and volume were developed as a function of moisture content, the exponential equations of surface area and volume were also developed as a function of physical dimensions, and the regression equations of surface area were also developed as a function of volume in all grain samples.

  • PDF