• 제목/요약/키워드: Shape accuracy

검색결과 1,658건 처리시간 0.024초

홍성 신경리 마애여래입상의 3차원 기록화를 통한 포토그래메트리의 유용성 연구 (A Study on the Usefulness of Photogrammetry through 3D Recording of the Rock-carved Standing Buddha in Singyeong-ri, Hongseong)

  • 오준영;김충식
    • 헤리티지:역사와 과학
    • /
    • 제50권3호
    • /
    • pp.30-43
    • /
    • 2017
  • 이 연구는 레이저스캐닝 중심의 문화유산 기록화 분야에서 포토그래메트리의 유용성 제고에 목적을 두고 있다. 두 계측기술(레이저스캐닝, 포토그래메트리)은 홍성 신경리 마애여래입상을 중심으로 정확성과 사실성 측면에서 비교되었다. 정확성 측면에서는 형상정보별 주요 지점과 두 형상정보 사이의 거리가 비교되었다. 마애불의 형상정보별 주요 지점의 거리 측정에서는 약 1mm 내외의 편차만이 확인되었다. 특히 정합을 통해 확인된 두 형상정보 사이의 평균거리는 약 0.01mm에 불과했다. 또한 약 2mm 이내의 절대편차가 전체의 70%를 차지하였으며, 약 3.5mm 이내의 절대편차가 전체의 95.4%로 확인되었다. 이러한 수치들은 레이저스캐닝 대비 포토그래메트리의 매우 높은 일치도를 보여주었다. 사실성 측면에서는 조각 깊이, 질감, 문양이 비교되었다. 4개의 단면 형상을 비교한 결과 두 계측기술별 형상정보는 미세한 차이만을 보였고, 전반적으로 유사한 형상이 확인되었다. 두 형상정보의 전체적인 질감도 유사하였다. 하지만 데시메이션이 적용된 포토그래메트리 기반의 세부 형상은 실물과 레이저스캐닝에 비해 매끄러운 질감으로 구현되었다. 특히 포토그래메트리는 레이저스캐닝과 동일하게 마애불에 조각된 다양한 문양도 사실적으로 구현하였으며, 얕은 깊이의 문양도 비교적 세밀하게 나타났다.

등기하 해석법을 이용한 형상 최적 설계 (Shape Design Optimization using Isogeometric Analysis Method)

  • 하승현;조선호
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2008년도 정기 학술대회
    • /
    • pp.216-221
    • /
    • 2008
  • Shape design optimization for linear elasticity problem is performed using isogeometric analysis method. In many design optimization problems for real engineering models, initial raw data usually comes from CAD modeler. Then designer should convert this CAD data into finite element mesh data because conventional design optimization tools are generally based on finite element analysis. During this conversion there is some numerical error due to a geometry approximation, which causes accuracy problems in not only response analysis but also design sensitivity analysis. As a remedy of this phenomenon, the isogeometric analysis method is one of the promising approaches of shape design optimization. The main idea of isogeometric analysis is that the basis functions used in analysis is exactly same as ones which represent the geometry, and this geometrically exact model can be used shape sensitivity analysis and design optimization as well. In shape design sensitivity point of view, precise shape sensitivity is very essential for gradient-based optimization. In conventional finite element based optimization, higher order information such as normal vector and curvature term is inaccurate or even missing due to the use of linear interpolation functions. On the other hands, B-spline basis functions have sufficient continuity and their derivatives are smooth enough. Therefore normal vector and curvature terms can be exactly evaluated, which eventually yields precise optimal shapes. In this article, isogeometric analysis method is utilized for the shape design optimization. By virtue of B-spline basis function, an exact geometry can be handled without finite element meshes. Moreover, initial CAD data are used throughout the optimization process, including response analysis, shape sensitivity analysis, design parameterization and shape optimization, without subsequent communication with CAD description.

  • PDF

유체-구조 연성 문제의 형상 최적설계 (Shape Design Optimization of Fluid-Structure Interaction Problems)

  • 하윤도;김민근;조현규;조선호
    • 대한조선학회논문집
    • /
    • 제44권2호
    • /
    • pp.130-138
    • /
    • 2007
  • A coupled variational equation for fluid-structure interaction (FSI) problems is derived from a steady state Navier-Stokes equation for incompressible Newtonian fluid and an equilibrium equation for geometrically nonlinear structures. For a fully coupled FSI formulation, between fluid and structures, a traction continuity condition is considered at interfaces where a no-slip condition is imposed. Under total Lagrange formulation in the structural domain, finite rotations are well described by using the second Piola-Kirchhoff stress and Green-Lagrange strain tensors. An adjoint shape design sensitivity analysis (DSA) method based on material derivative approach is applied to the FSI problem to develop a shape design optimization method. Demonstrating some numerical examples, the accuracy and efficiency of the developed DSA method is verified in comparison with finite difference sensitivity. Also, for the FSI problems, a shape design optimization is performed to obtain a maximal stiffness structure satisfying an allowable volume constraint.

수명분포가 지수화-지수분포를 따르는 소프트웨어 신뢰모형 특성에 관한 연구 (A Study on the Characteristics of Software Reliability Model Using Exponential-Exponential Life Distribution)

  • 김희철;문송철
    • Journal of Information Technology Applications and Management
    • /
    • 제27권3호
    • /
    • pp.69-75
    • /
    • 2020
  • In this paper, we applied the shape parameters of the exponentialized exponential life distribution widely used in the field of software reliability, and compared the reliability properties of the software using the non-homogeneous Poisson process in finite failure. In addition, the average value function is also a non-decreasing form. In the case of the larger the shape parameter, the smaller the estimated error in predicting the predicted value in comparison with the true value, so it can be regarded as an efficient model in terms of relative accuracy. Also, in the larger the shape parameter, the larger the estimated value of the coefficient of determination, which can be regarded as an efficient model in terms of suitability. So. the larger the shape parameter model can be regarded as an efficient model in terms of goodness-of-fit. In the form of the reliability function, it gradually appears as a non-increasing pattern and the higher the shape parameter, the lower it is as the mission time elapses. Through this study, software operators can use the pattern of mean square error, mean value, and hazard function as a basic guideline for exploring software failures.

Development of New Optimized Sampling method for 3D Shape Recovery in the Presence of Noise

  • Lee, Hyeong-Geun;Jang, Hoon-Seok
    • 한국정보전자통신기술학회논문지
    • /
    • 제13권2호
    • /
    • pp.113-122
    • /
    • 2020
  • Noise affects the accuracy of three-dimensional shape recovery. Its occurrence is unpredictable and depends on several mechanical, environmental, and other factors. When two-dimensional image sequences are obtained for shape from focus (SFF), mechanical vibration occurs in the translational stage, causing an error in the three-dimensional shape recovery. To address this issue, mechanical vibration is modeled using Newton's second law and the principle of the rack and pinion gear. Then, an optimal sampling step size considering the mechanical vibration is suggested through theoretical demonstration. Experiments conducted with real objects verify the effectiveness of the proposed sampling step size. In this paper, in a realistic environment with noise, the potential of obtaining more accurate three-dimensional reconstruction results of the objects is explored by acquiring the optimal sampling step size, which improves the sampling step size relative to those reported in a previous study performed under similar conditions.

상대속도를 이용한 바렐 캠의 설계에 관한 연구 (A Study on Design of Barrel Cam Using Relative Velocity)

  • 신중호;김성원;강동우;윤호업
    • 한국정밀공학회지
    • /
    • 제19권8호
    • /
    • pp.47-54
    • /
    • 2002
  • A barrel cam is used as a very important part of an index drive unit. The index drive unit must have an intermittent-rotational motion. The barrel typed cam and roller gear mechanism has the advantages of high reliability to perform a prescribed motion of a follower. This paper proposes a new method for the shape design of the barrel cam and also a CAD program is developed by using the proposed method. As defined in this paper, the relative velocity method for the shape design calculates the relative velocity of the follower versus cam at a center of roller, and then determines a contact point by using the geometric relationships and the kinematic constraints, where the direction of the relative velocity must be parallel to a common tangential line at the contact point of two independent bodies, i.e. the cam and the follower Then, the shape of the cam is defined by the coordinate transformation of the trace of the contact points. This paper presents two examples for the shape design of the barrel cam in order to prove the accuracy of the proposed methods.

Performance analyses of antagonistic shape memory alloy actuators based on recovered strain

  • Shi, Zhenyun;Wang, Tianmiao;Da, Liu
    • Smart Structures and Systems
    • /
    • 제14권5호
    • /
    • pp.765-784
    • /
    • 2014
  • In comparison with conventional shape memory actuated structures, antagonistic shape memory alloy (SMA) actuators permits a fully reversible two-way response and higher response frequency. However, excessive internal stress could adversely reduce the stroke of the actuators under repeated use. The two-way shape memory effect might further decrease the range of the recovered strain under actuation of an antagonistic SMA actuator unless additional components (e.g., spring and stopper) are added to regain the overall actuation capability. In this paper, the performance of all four possible types of SMA actuation schemes is investigated in detail with emphasis on five key properties: recovered strain, cyclic degradation, response frequency, self-sensing control accuracy, and controllable maximum output. The testing parameters are chosen based on the maximization of recovered strain. Three types of these actuators are antagonistic SMA actuators, which drive with two active SMA wires in two directions. The antagonistic SMA actuator with an additional pair of springs exhibits wider displacement range, more stable performance under reuse, and faster response, although accurate control cannot be maintained under force interference. With two additional stoppers to prevent the over stretch of the spring, the results showed that the proposed structure could achieve significant improvement on all five properties. It can be concluded that, the last type actuator scheme with additional spring and stopper provide much better applicability than the other three in most conditions. The results of the performance analysis of all four SMA actuators could provide a solid basis for the practical design of SMA actuators.

위상이동 간섭무늬 투영을 이용한 3차원 형상측정 시스템의 위상계산오차 해석 (Phase calcuation error analysis of 3D shape measurement system using phase-shifted fringe projection method)

  • 류현미;김석성;홍석경;연규황
    • 한국광학회지
    • /
    • 제13권3호
    • /
    • pp.182-188
    • /
    • 2002
  • 위상이동 간섭무늬 투영 방법을 이용한 3차원 형상측정 시스템의 위상계산오차를 분석하였다. 본 연구에서 다룬 오차의 요소에는 물체 표면의 특성에 따라 검출기에 나타나는 양자화 크기의 변이 효과, 물체 표면에 맺히는 간섭무늬 패턴의 초점 어긋남 효과, 간섭무늬의 위상이동 오차에 의한 효과, 위상 이동된 간섭무늬 패턴이 투영된 여러 개의 물체 상을 받아들이는 도중에 시스템 및 주위 환경 변화에 의한 오차, 그리고 투영되는 격자 패턴의 왜곡에 의한 효과들을 계산하고 논의하였다.

링 조명에 의한 BGA 볼의 3차원 형상 인식 (Shape Recognition of a BGA Ball using Ring Illumination)

  • 김종형
    • 제어로봇시스템학회논문지
    • /
    • 제19권11호
    • /
    • pp.960-967
    • /
    • 2013
  • Shape recognition of solder ball bumps in a BGA (Ball Grid Array) is an important issue in flip chip bonding technology. In particular, the semiconductor industry has required faster and more accurate inspection of micron-size solder bumps in flip chip bonding as the density of balls has increased dramatically. The difficulty of this issue comes from specular reflection on the metal ball. Shape recognition of a metal ball is a very realproblem for computer vision systems. Specular reflection of the metal ball appears, disappears, or changes its image abruptly due to tiny movementson behalf of the viewer. This paper presents a practical shape recognition method for three dimensional (3-D) inspection of a BGA using a 5-step ring illumination device. When the ring light illuminates the balls, distinctive specularity images of the balls, which are referred to as "iso-slope contours" in this paper, are shown. By using a mathematical reflectance model, we can drive the 3-D shape information of the ball in aquantitative manner. The experimental results show the usefulness of the method for industrial application in terms of time and accuracy.

고강도 열연재의 홀 플랜징시 립 형상이 플랜정성에 미치는 효과 (Effect of Lip Shape on the Hole Flangeability of High Strength Steel Sheets)

  • 김정운;김봉준;문영훈
    • 대한기계학회논문집A
    • /
    • 제26권1호
    • /
    • pp.147-152
    • /
    • 2002
  • Effect of lip shape on the hole flangeability of high strength steel sheets is investigated. Circular plates of various hole sizes are tested and the variation of lip length as well as the variation of thickness on the sectional views of the finished lip were studied. The conventional hole flanging process is limited to a certain limit hole diameter below which failure will ensue during the hole expansion. The intention of this work is to examine the effect of lip shape on the flangeability of TRIP steel and Ferrite-Bainite duplex steel and find out major parameters which can affect flanging shape of high strength hot rolled steels. Over the ranges of conditions investigated, the minimum hole diameter of F+B steel is better than TRIP steel. while, the lip-shape accuracy of TRIP steel is better than that of F+B steel. although the tensile strength and elongation of %P steel are superior than those of Ferrite-Bainite duplex steel, the flangeability is found to be not so strongly sensitive to the tensile properties but sensitive to displacement on the circumferential direction of hole edge.