• Title/Summary/Keyword: Shape Variables

Search Result 1,195, Processing Time 0.024 seconds

Relationship between the maxillofacial skeletal pattern and the morphology of the mandibular symphysis: Structural equation modeling

  • Ahn, Mi So;Shin, Sang Min;Yamaguchi, Tetsutaro;Maki, Koutaro;Wu, Te-Ju;Ko, Ching-Chang;Kim, Yong-Il
    • The korean journal of orthodontics
    • /
    • v.49 no.3
    • /
    • pp.170-180
    • /
    • 2019
  • Objective: The purpose of this study was to investigate the relationship between the facial skeletal patterns and the shape of the mandibular symphysis in adults with malocclusion by using a structural equation model (SEM). Methods: Ninety adults who had malocclusion and had records of facial skeletal measurements performed using cone-beam computed tomography were selected for this study. The skeletal measurements were classified into three groups (vertical, anteroposterior, and transverse). Cross-sectional images of the mandibular symphysis were analyzed using generalized Procrustes and principal component (PC) analyses. A SEM was constructed after the factors were extracted via factor analysis. Results: Two factors were extracted from the transverse, vertical, and anteroposterior skeletal measurements. Latent variables were extracted for each factor. PC1, PC2, and PC3 were selected to analyze the variations of the mandibular symphyseal shape. The SEM was constructed using the skeletal variables, PCs, and latent variables. The SEM showed that the vertical latent variable exerted the most influence on the mandibular symphyseal shape. Conclusions: The relationship between the skeletal pattern and the mandibular symphysis was analyzed using a SEM, which showed that the vertical facial skeletal pattern had the highest effect on the shape of the mandibular symphysis.

Compensation for Elastic Recovery in a Flexible Forming Process Using Predictive Models for Shape Error (성형 오차 예측 모델을 이용한 가변 성형 공정에서의 탄성 회복 보정)

  • Seo, Y.H.;Kang, B.S.;Kim, J.
    • Transactions of Materials Processing
    • /
    • v.21 no.8
    • /
    • pp.479-484
    • /
    • 2012
  • The objective of this study is to compensate the elastic recovery in the flexible forming process using the predictive models. The target shape was limited to two-dimensional shape having only one curvature radius in the longitudinal-direction. In order to predict the shape error the regression and neural network models were established based on the finite element (FE) simulations. A series of simulations were conducted considering input variables such as the elastic pad thickness, the thickness of plate, and the objective curvature radius. Then, at sampling points in the longitudinal-direction, the shape errors between formed and objective shapes could be calculated from the FE simulations as an output variable. These shape errors were expressed to a representative error value by the root mean square error (RMSE). To obtain the correct objective shape the die shape was adjusted by the closed-loop using the neural network model since the neural network model shows a higher capability of estimating the shape error than the regression model. Finally the experimental result shows that the formed shape almost agreed with the objective shape.

MULTI-STAGE AERODYNAMIC DESIGN OF AIRCRAFT GEOMETRIES BY KRIGING-BASED MODELS AND ADJOINT VARIABLE APPROACH (Kriging 기반 모델과 매개변수(Adjoint Variable)법을 이용한 항공기형상의 2단계 공력최적설계)

  • Yim, J.W.;Lee, B.J.;Kim, C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.57-65
    • /
    • 2009
  • An efficient and high-fidelity design approach for wing-body shape optimization is presented. Depending on the size of design space and the number of design of variable, aerodynamic shape optimization process is carried out via different optimization strategies at each design stage. In the first stage, global optimization techniques are applied to planform design with a few geometric design variables. In the second stage, local optimization techniques are used for wing surface design with a lot of design variables to maintain a sufficient design space with a high DOF (Degree of Freedom) geometric change. For global optimization, Kriging method in conjunction with Genetic Algorithm (GA) is used. Asearching algorithm of EI (Expected Improvement) points is introduced to enhance the quality of global optimization for the wing-planform design. For local optimization, a discrete adjoint method is adopted. By the successive combination of global and local optimization techniques, drag minimization is performed for a multi-body aircraft configuration while maintaining the baseline lift and the wing weight at the same time. Through the design process, performances of the test models are remarkably improved in comparison with the single stage design approach. The performance of the proposed design framework including wing planform design variables can be efficiently evaluated by the drag decomposition method, which can examine the improvement of various drag components, such as induced drag, wave drag, viscous drag and profile drag.

  • PDF

Shape Design Optimization of High-Speed Air Vehicles Using Non-Uniform Rational B-Splines (NURBS 곡선을 이용한 고속비행체 최적형상설계)

  • Kim Sang-Jin;Lee Jae-Woo;Byun Yung-Hwan;Kim Myung-Seong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2001.05a
    • /
    • pp.72-77
    • /
    • 2001
  • The computational efficiency of an shape optimization procedure is highly dependent upon the proper selection of shape representation methods and design variables. In this study, shape functions, Bezier and NURBS(non-uniform rational B-splines) curves are selected as configuration generation methods and their efficiencies on the nose shape design of high-speed air vehicles, are compared. The effects of the number of control points, weighting factors and the optimization methods when utilizing the NURBS curves, are investigated. By implementing Bezier and NURBS curves, shapes having lower drag than the optimization case utilizing the shape functions, were obtained, hence it was demonstrated that these curves have better capability in representing the configuration. Efforts will be given to improve the convergence behavior when utilizing the NURBS, hence to reduce the number of Navier-Stokes analysis calculations.

  • PDF

A Study on the Shape Optimal Design of a Bogie Frame for the Reduction of its Weight (대차프레임의 중량감소를 위한 형상최적설계에 관한 연구)

  • 조우석;최경호;박정호;안찬우;김현수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.616-619
    • /
    • 2000
  • The optimum design of a structure requires to determine economical member size and shape of a structure which satisfies the design conditions and functions. In this study, it is attempted to minimize a dead weight of the bogie frame. Therefore, shape optimization is performed for a bolster rib at first and then size optimization for the thickness of top and bottom plate. For the efficient reduction of a weight of a bogie frame, various ellipses centered at a centroid of a bolster rib are made and tried. For the shape optimization, a major axis and an eccentricity of an ellipse are chosen as design variables. From the numerical results of shape and size optimization of a bogie frame, it is known that the weight can be reduced up to 12.476 Y4717.21 kg) with displacement and stress constraints.

  • PDF

A Study on Shape Design of the Passenger Airbag for Efficiency Improvement (조수석 에어백 성능 개선을 위한 형상 설계연구)

  • Yang, Sunghoon;Yim, Jonghyun;Kim, Seungki;Chae, Soo-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.2
    • /
    • pp.242-249
    • /
    • 2017
  • In this study, the relationship between the shape of a passenger airbag and the possibility of injury is analyzed using the Taguchi method. The optimal shape combination is proposed for a design guideline that can reduce the possibility of injury to the dummy. The airbag FE model for analysis is obtained using a CAD system that can change the shape through several independent variables. The widths of the left / right, top / bottom, and back / forth direction of the airbag shape are set as the design factors, and the effect of the combination injury probability according to the shape is analyzed. The minimum geometric combinations are obtained using the orthogonal array method. The signal to noise ratio is calculated and the optimal shape combination is obtained through sensitivity analysis. The obtained optimal shape combination is compared with the possibility of injury of the initial airbag shape to confirm improved airbag performance.

Classification and discrimination of excel radial charts using the statistical shape analysis (통계적 형상분석을 이용한 엑셀 방사형 차트의 분류와 판별)

  • Seungeon Lee;Jun Hong Kim;Yeonseok Choi;Yong-Seok Choi
    • The Korean Journal of Applied Statistics
    • /
    • v.37 no.1
    • /
    • pp.73-86
    • /
    • 2024
  • A radial chart of Excel is very useful graphical method in delivering information for numerical data. However, it is not easy to discriminate or classify many individuals. In this case, after shaping each individual of a radial chart, we need to apply shape analysis. For a radial chart, since landmarks for shaping are formed as many as the number of variables representing the characteristics of the object, we consider a shape that connects them to a line. If the shape becomes complicated due to the large number of variables, it is difficult to easily grasp even if visualized using a radial chart. Principal component analysis (PCA) is performed on variables to create a visually effective shape. The classification table and classification rate are checked by applying the techniques of traditional discriminant analysis, support vector machine (SVM), and artificial neural network (ANN), before and after principal component analysis. In addition, the difference in discrimination between the two coordinates of generalized procrustes analysis (GPA) coordinates and Bookstein coordinates is compared. Bookstein coordinates are obtained by converting the position, rotation, and scale of the shape around the base landmarks, and show higher rate than GPA coordinates for the classification rate.

Semi-Partial Canonical Correlation Biplot

  • Lee, Bo-Hui;Choi, Yong-Seok;Shin, Sang-Min
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.3
    • /
    • pp.521-529
    • /
    • 2012
  • Simple canonical correlation biplot is a graphical method to investigate two sets of variables and observations in simple canonical correlation analysis. If we consider the set of covariate variables that linearly affects two sets of variables, we can apply the partial canonical correlation biplot in partial canonical correlation analysis that removes the linear effect of the set of covariate variables on two sets of variables. On the other hand, we consider the set of covariate variables that linearly affect one set of variables but not the other. In this case, if we apply the simple or partial canonical correlation biplot, we cannot clearly interpret other two sets of variables. Therefore, in this study, we will apply the semi-partial canonical correlation analysis of Timm (2002) and remove the linear effect of the set of covariate variables on one set of variables but not the other. And we suggest the semi-partial canonical correlation biplot for interpreting the semi-partial canonical correlation analysis. In addition, we will compare shapes and shape the variabilities of the simple, partial and semi-partial canonical correlation biplots using a procrustes analysis.

Variables affecting Korean word recognition: focusing on syllable shape (한글 단어 재인에 영향을 미치는 변인: 음절 형태를 중심으로)

  • Min, Suyoung;Lee, Chang H.
    • Korean Journal of Cognitive Science
    • /
    • v.29 no.4
    • /
    • pp.193-220
    • /
    • 2018
  • Recent studies have demonstrated that word frequency, word length, neighborhood and word shape may have a role in visual word recognition. Shape information may affect word processing in different ways as Korean letter system works differently than that of English. The purpose of this study was to apply Gestalt's continuity principle to Korean alphabetic script(hangul), and to investigate the processing unit of hangul and to verify whether syllable shape affects word recognition in hangul. In experiment 1, three syllable words were utilized and two variables; 1) syllable types(horizontal syllable shape, e.g., "가". vertical syllable shape, e.g., "고") and 2) presenting direction (horizontal, vertical) were manipulated. Whereas "가" meets the criteria of Gestalt's continuity principle, "고" does not. Based on the result of lexical decision time, horizontal syllable shape type showed significant performance improvement, when compared to vertical syllable shape type, regardless of the presenting direction. In experiment 2, syllable types(horizontal syllable shape, vertical syllable shape) and the visual relationship between prime and target(identical, similar, different) were manipulated by using masked priming. There was a significant performance difference between the visual relationship of prime and target, and thus the effect of syllable shape was verified.

Optimal Design for the Low Drag Tail Shape of the MIRA Model (MIRA Model 후미의 저저항 최적 설계)

  • Hur Nahmkeon;Kim Wook
    • Journal of computational fluids engineering
    • /
    • v.4 no.1
    • /
    • pp.34-40
    • /
    • 1999
  • Drag reduction on vehicles are the main concern for the body shape designers in order to lower the fuel consumption rate and to aid the driving stability. The drag of bluff bodies like transportation vehicles is mostly pressure drag due to the flow separation, which can be minimized by controlling the location and size of the separation bubble. In the present study, the TURBO-3D code is incorporated with optimal algorithm based on analytical approximation method to obtain an optimal afterbody shape of the MIRA Model corresponding to the lowest drag coefficient. For this purpose three mutually independent afterbody angles are chosen as design variables, while the drag coefficient is chosen as an objective function. It is demonstrated in the present study that an optimal body shape having the lowest drag coefficient which is about 6% lower than that of the original shape has been successfully obtained within number of iterations of tile optimal design loop.

  • PDF