• Title/Summary/Keyword: Shape Variables

Search Result 1,191, Processing Time 0.03 seconds

Shape Optimization of Sedimentation Tank Using Response Surface Method (반응면기법을 이용한 침전조의 형상최적설계)

  • Kim, Hong-Min;Choi, Seung-Man;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.6 s.27
    • /
    • pp.55-61
    • /
    • 2004
  • A numerical procedure for optimizing the shape of three-dimensional sedimentation tank is presented to maximize its sedimentation efficiency. The response surface based optimization is used as an optimization technique with Reynolds-averaged Navier-Stokes analysis for multi-phase flow. Standard $k-{\epsilon}$ model is used as a turbulence closure. Three design variables such as, tank height to center feed wall diameter ratio, blockage ratio of center feed wall and angle of distributor are chosen as design variables. Sedimentation efficiency is defined as an objective function. Full-factorial method is used to determine the training points as a means of design of experiment. Sensitivity of each design variable on the objective function has been evaluated. And, optimal values of the design variables have been obtained.

Finite Element Analysis for Shape Prediction on Micro Lens Forming (마이크로 렌즈 성형시 형상예측을 위한 유한요소해석)

  • 전병희;홍석관;표창률
    • Transactions of Materials Processing
    • /
    • v.11 no.7
    • /
    • pp.581-588
    • /
    • 2002
  • Among the processes to produce micro lens, the process using press molding is a new technology to simplify the process, but it contains many unknown variables. The press-molding process proposed in this paper was simplified into two step process, the first step is the pressing to design the preform for glass element, the second step is the annealing to reduce the residual stress. It is important to estimate the amount of shrinkage of glass gob and the residual stress during process. It Is difficult to evaluate the process variables as mentioned above through the experiment. The influences due to process variables was evaluated by using FEM parametric analysis. The results in this paper can be applicable to produce micro lens.

Effect of Physical Shape on Seismic Performance of URM Structures (비보강 조적식 구조의 형상에 따른 내진성능 평가 해석)

  • Park, Joonam
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.5
    • /
    • pp.277-283
    • /
    • 2016
  • Unreinforced masonry (URM) buildings are known to be highly vulnerable to seismic loadings. Although significant physical variation may exist for URM buildings that fall into a same structural category, a single set of fragility curves is typically used as a representation of the seismic vulnerability of the URM structures. This study investigates the effect of physical variation of URM structures on their seismic performance level. Variables that describe the physical variation of the structure are defined based on the inventory analysis. Seismic behavior of the structures is then monitored by changing the variables to investigate the effect of each variable. The analysis results show that among the variables considered the seismic performance of URM building depends on the variation of the width, the aspect ratio, and the number of story. The need for further research on the modeling of the connections between the walls and diaphragms and the torsional effect is also addressed.

A STUDY ON THE AERODYNAMIC SHAPE DESIGN WITH THE PARSEC FUNCTION (PARSEC 함수를 이용한 헤어포일의 공력 형상 설계 연구)

  • Lee, Jae-Hun;Jung, Kyung-Jin;Kwon, Jang-Hyuk;Ahn, Joong-Ki
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.88-91
    • /
    • 2007
  • In the shape design optimization of an airfoil, the shape function has been used to find the optimal airfoil shape for given conditions. The parameters determining the airfoil shape are used in the shape design optimization as design variables. However, they usually don't have physical meaning. The PARSEC (Parametric Shapes) function is a recently proposed shape function and its parameters have the physical meaning. In this study the usefulness of the PARSEC is tested for the RAE2822 airfoil in the transonic flow region to reduce the shock strength and the result is compared with Hicks-Henne function. The optimized airfoils reduce the shock strength and they show similar result.

  • PDF

A study on the mapping between the feeding force of filter wire and welding position for the control of back bead shape in orbital TIG welding (원주 TIG 용접에서 이면 비드 형상 제어를 위한 Filter Wire 송급힘과 용접자세의 상관관계에 대한 연구)

  • 강선호;조형석;장희석;우승엽
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.792-795
    • /
    • 1996
  • In TIG welding of pipe, back bead size monitoring is important for weld quality assurance. Many researches have been performed on estimation of the back bead size by heat conduction analysis. However numerical conduction model based on many uncertain thermal parameters causes remarkable errors and thermomechanical phenomena in molten pool can not be considered. In this paper, filler wire feeding force in addition to weld current, wire feedrate, torch travel speed and orbital position angle is monitored to estimate back bead size in orbital TIG welding. Monitored welding process variables are fed into an artificial neural network estimator which has been trained with the monitored process variables (input patterns) and actual back bead size (output patterns). Experimental verification of the proposed estimation method was performed. The predicted results are in a good agreement with the actual back bead shape. The results are quite promising in that estimation of invisible back bead shape can be achieved by analyzing the welding parameters without any conventional NDT of welds.

  • PDF

Design of punch shape for reducing the punch wear in the backward extrusion (후방 압출 펀치의 마멸 저감을 위한 금형 형상 설계)

  • 박태준;이동주;김동진;김병민
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.575-578
    • /
    • 2000
  • Die design to minimize the die wear in the cold forging process is very important as it reduce the production cost and the increase of the production rate. The quantitative estimation for the die wear is too hard because the prediction of the die wear is determined with many process variables. So, in this paper, the optimal shape of the backward extrusion punch is newly designed through the FE-analysis considering the surface expansion and Archard's wear model in order to reduce the rapid wear rate that is generated for the backward extrusion product exceeding the forming limit. The main shape variables of the backward extrusion punch are the flat, angle, and round of the punch nose part. As the flat and angle of the punch nose are larger, the surface expansion is reduced. and, the wear rate is decreased according to the reduction of the punch round. These results obtained through this study are applied to the real manufacturing process, it is implemented the reduction of the wear rate.

  • PDF

Design of Punch Shape for Reducing the Punch Wear in the Backward Extrusion (후방 압출 펀치의 마멸 저감을 위한 펀치 형상 설계)

  • Kim Dong Hwan;Lee Jung Min;Kim Byung Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.10
    • /
    • pp.180-187
    • /
    • 2004
  • Die design to minimize the die wear in the cold forging process is very important as it reduce the production cost and the increase of the production rate. The quantitative estimation fur the die wear is too hard because the die wear is caused by many process variables. So, in this paper, the optimal shape of the backward extrusion punch is newly designed through the FE-analysis considering the surface expansion and Archard wear model in order to reduce the rapid wear rate that is generated for the backward extruded products exceeding the forming limit. The main shape variables of the backward extrusion punch are the flat diameter, angle, and round of the punch nose part. As the flat diameter and angle of the punch nose are larger, the surface expansion is reduced and the wear rate is decreased according to the reduction of the punch round. These results obtained through this study can be applied to the real manufacturing process.

Geometry of the Model Purse Seine in Relation to Enclosed Volume during Hauling Operation

  • Kim Yong-Hae
    • Fisheries and Aquatic Sciences
    • /
    • v.3 no.2
    • /
    • pp.156-162
    • /
    • 2000
  • Model experiments for a purse seine were carried out in order to measure the geometry of net shape and to estimate an enclosed volume by using 1177 scale model purse seine of 12.62m float line from an offshore mackerel purse seine. A model purse seine was set from a net box of shooting equipments and then pursing and hauling net by hauling equipment. The 3- D geometry shape of the purse seine net during hauling operation was measured by video image processing and tension of purse line by load cell. The 3-D geometry of the model purse seine during hauling operation could be represented with variables such as a ratio of shooting diameter or maximum net depth and a ratio of hauling operation time. Horizontal shapes of float line and lead line were varied from a circle after shooting to an ellipse with pursing and hauling. Projected lateral shape of purse line was observed and formulated as a shape of a water drop. The cross sectional shapes of curved net from two directions were varied such as sine function or polynomial curves. Therefore, enclosed volume of a purse seine in relation to fish school behaviour can be approximated using two main variables from relevant equations.

  • PDF

A Study on the Analysis and Improvement of Forming Process of a No-Bridge Blank (No-Bridge Blank의 공정 해석 및 성형 공정 개선에 관한 연구)

  • Lee Y. W.;Cho K. Z.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.85-88
    • /
    • 2001
  • Deep drawing process, one of sheet metal forming methods, is used widely. Circular or square shape blanks are currently studied mainly. Especially, circular blank for coating case of chip condenser remains bridges when it is made out of aluminum coil. The bridge reduces Material-withdrawal-rate of aluminum coil to $60\%$. This paper proposes a no-bridge blank instead of circular blank. To get the different values of two cases, comparison circular blank with no-bridge blank is accomplished in the point of thickness strain in the vicinity of flange. In order to find optimal condition in new proposed blank, several process variables - those are blank holder shape, die shape radii, punch shape radii and blank holding force - are changed.

  • PDF