• Title/Summary/Keyword: Shape Variables

Search Result 1,195, Processing Time 0.026 seconds

Aerodynamic Shape Design of a Partial Admission Turbine Using CFD (CFD를 이용한 부분흡입형 터빈 공력형상 설계)

  • Lee, Eun-Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.11 s.254
    • /
    • pp.1131-1138
    • /
    • 2006
  • Aerodynamic shape design of a partial admission turbine using CFD has been performed. Two step approaches are adopted in this study. Firstly, two-dimensional blade shape is optimized using CFD and genetic algorithm. Initially, the turbine cascade shape is represented by four design parameters. By controlling the design parameters as variables, the non-gradient search is analyzed for obtaining the maximum efficiency. The final two-dimensional blade proved to have a more blade power than the initial blade. Secondly, the three-dimensional CFD analysis including the nozzle, rotor and stator has been conducted. To avoid a heavy computational load due to an unsteady calculation, the frozen rotor method is implemented in steady calculation. The frozen rotor method can detect a variation of the flow-field dependent upon the blade's circumferential position relative to the nozzle. It gives a better idea of wake loss mechanism starting from the lip of the nozzle than the mixing plane concept. Finally, the combination of two and three dimensional design method of the partial admission turbine in this study has proven to be a robust tool in development phase.

Shape Optimization of a Stator Blade in a Single-Stage Transonic Axial Compressor (단단 천음속 축류압축기의 정익형상 최적설계)

  • Kim Kwang Yong;Jang Choon Man
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.5 s.236
    • /
    • pp.625-632
    • /
    • 2005
  • This paper describes the shape optimization of a stator blade in a single-stage transonic axial compressor. The blade optimization has been performed using response surface method and three-dimensional Navier-Stokes analysis. Two shape variables of the stator blade, which are used to define a stacking line, are introduced to increase an adiabatic efficiency. Data points for response evaluations have been selected by D-optimal design, and linear programming method has been used for an optimization on a response surface. Throughout the shape optimization of a stator blade, the adiabatic efficiency is increased to 5.8 percent compared to that of the reference shape of the stator. The increase of the efficiency is mainly caused by the pressure enhancement in the stator blade. Flow separation on the blade suction surface of the stator is also improved by optimizing the stator blade. It is noted that the optimization of the stator blade is also useful method to increase the adiabatic efficiency in the axial compressor as well as the optimization of a rotor blade, which is widely used now.

Evolutionary Shape Optimization of Flexbeam Sections of a Bearingless Helicopter Rotor

  • Dhadwal, Manoj Kumar;Jung, Sung Nam;Kim, Tae Joo
    • Composites Research
    • /
    • v.27 no.6
    • /
    • pp.207-212
    • /
    • 2014
  • The shape optimization of composite flexbeam sections of a bearingless helicopter rotor is studied using a finite element (FE) sectional analysis integrated with an efficient evolutionary optimization algorithm called particle swarm assisted genetic algorithm (PSGA). The sectional optimization framework is developed by automating the processes for geometry and mesh generation, and the sectional analysis to compute the elastic and inertial properties. Several section shapes are explored, modeled using quadratic B-splines with control points as design variables, through a multiobjective design optimization aiming minimum torsional stiffness, lag bending stiffness, and sectional mass while maximizing the critical strength ratio. The constraints are imposed on the mass, stiffnesses, and critical strength ratio corresponding to multiple design load cases. The optimal results reveal a simpler and better feasible section with double-H shape compared to the triple-H shape of the baseline where reductions of 9.46%, 67.44% and 30% each are reported in torsional stiffness, lag bending stiffness, and sectional mass, respectively, with critical strength ratio greater than 1.5.

Study on the Springback Reduction of Automotive Advanced High Strength Steel Panel (자동차 초고강도 강판 패널의 스프링백 저감에 관한 연구)

  • Kim, B.G.;Lee, I.S.;Keum, Y.T.
    • Transactions of Materials Processing
    • /
    • v.18 no.6
    • /
    • pp.488-493
    • /
    • 2009
  • The very big springback of advanced high strength steel(AHSS) sheets invokes undesired shape defects, which can be generally eliminated by die correction or process parameter control. The springback reduction by controlling the forming process parameters is easy for the application, but limited for the bulky achievement. In this study, the effective die correction method, which obtains the modification of tool shape from the relationship between die design variable and springback, is introduced and is applied to the TWB tool of automotive side rail to show the validity and usefulness. Among the die correction trials repeatedly performed, the first trial is carried out by correcting the tool shape to the opposite direction to the springbacks of several tool sections. Next trials are done by extrapolating the springbacks of among the original tool uncorrected and the tools corrected negative amounts of the springback and by finding tool shapes without springbacks. After the angle of side wall and radius of curvature of horizontal bottom floor are chosen as design variables in the tool design of side rail, the tool shape is corrected 3 times. The accuracy of final shape within the assembly limit of 1mm and the springback reduction of 75.8% compared to the uncorrected tool are achieved.

A Study on the Movement-Fitness according to the Surface changing of Lower-Limb -On the Movements and Shapes of Lower-limb- (하복의 체표변화에 따른 동작적합성에 관한 연구 -하복동작 및 체형을 중심으로-)

  • 박영득;서영숙
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.20 no.2
    • /
    • pp.257-269
    • /
    • 1996
  • The puropose of this study was to investigate the movement-fitness according to the surface changing of lower limb The experimental items were divided into the lower limb movements (5) and body-shapes (7). This study was done by the expansion and contraction rate consideration of length, girth Also, the lower half of body shape-change on the movements and body-shapes by flat shell was done simultaneously. The summarized findings resulted from experiments and investigation are suggested as follows; First, when commpared the expansion and contraction rate of the length and girth items, the expansion rate of the back crotch length (14~20%), hip girth (10~ 21%) and knee girth (6.2~18.5%) in rabbit leap movement was the most notable among all variables considered in this experimentation. On the others hand, the front croth length (-22~-52%) contracted remarkably. And big-thigh type was the most notable on the body-shape comparision. Second, in comparision of the expansion and contraction rate of the area on the blocks, the expansion of the hip (50~200%) and knee (51~74%) block was the most remarkable. Especially, in the sit on knees movement of the hip-down type expanded 209.4%. Third, in comparision of the lower half of body shape-change, on the movements and body- shapes by the flat shell, under the influence of knee-joint and hip-joint the shape-changs of the hip and knee block was the most notable. But the shape-change of the waist, abdomen, calf, and ankle was feeble.

  • PDF

A Finite Element Analysis and Shape Optimal Design with Specified Stiffness for U-typed Bellows (U형 벨로우즈의 유한요소해석과 특정 강성을 위한 형상최적설계)

  • Koh, K.G.;Suh, Y.J.;Park, G.J.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.6
    • /
    • pp.96-111
    • /
    • 1995
  • A bellows is a component installed in the automobile exhaust system to reduce the impact from an engine. It's stiffness has a great influence on the natural frequency of the system. Therefore, it must be designed to keep the specified stiffness that requires in the system. This study present the finite element analysis of U-typed bellows using a curved conical frustum element and the shape optimal design with specified stiffness. The finite element analysis is verified by comparing with the experimental results. In the shape optimal design, the weight is considered as the cost function. The specified stiffness from the system design is transformed to equality constraints. The formulation has inequality constraints imposed on the fatigue limit, the natural frequencies, the buckling load and the manufacturing conditions. A procedure for shape optimization adopts a thickness, a corrugation radius, and a length of annular plate as optimal design variables. The external loading conditions include the axial and lateral loads with a boundary condition fixed at an end of the bellows. The recursive quadratic programming algorithm is selected to solve the problem. The result are compared with the existing bellows, and the characteristics of the bellows is investigated through the optimal design process. The optimized shape of the bellows are expected to give quite a good guideline to the practical design.

  • PDF

Optimum design of shape and size of truss structures via a new approximation method

  • Ahmadvand, Hosein;Habibi, Alireza
    • Structural Engineering and Mechanics
    • /
    • v.76 no.6
    • /
    • pp.799-821
    • /
    • 2020
  • The optimum design of truss structures is one of the significant categories in structural optimization that has widely been applied by researchers. In the present study, new mathematical programming called Consistent Approximation (CONAP) method is utilized for the simultaneous optimization of the size and shape of truss structures. The CONAP algorithm has already been introduced to optimize some structures and functions. In the CONAP algorithm, some important parameters are designed by employing design sensitivities to enhance the capability of the method and its consistency in various optimum design problems, especially structural optimization. The cross-sectional area of the bar elements and the nodal coordinates of the truss are assumed to be the size and shape design variables, respectively. The displacement, allowable stress and the Euler buckling stress are taken as the design constraints for the problem. In the proposed method, the primary optimization problem is replaced with a sequence of explicit sub-problems. Each sub-problem is efficiently solved using the sequential quadratic programming (SQP) algorithm. Several truss structures are designed by employing the CONAP method to illustrate the efficiency of the algorithm for simultaneous shape and size optimization. The optimal solutions are compared with some of the mathematical programming algorithms, the approximation methods and metaheuristic algorithms those reported in the literature. Results demonstrate that the accuracy of the optimization is improved and the convergence rate speeds up.

Structural Performance of Y Type Plate Connection between Circular CFT Column and H Shape Steel Beam (Y형 플레이트를 적용한 원형 CFT 기둥-H형강 보 접합부의 구조성능)

  • Jo, Hyun-Kook;Choi, Chang-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.6
    • /
    • pp.112-118
    • /
    • 2015
  • These days, there are lots of skyscrapers being constructed in downtown areas. However, it requires columns which have a way heavier load. and far more extensive cross sections of column as well. Therefore, it is hard to lay the foundation in downtown areas. This being the case, composite columns such as CFT column are primarily being used. However, CFT column is occurred of difficult beam-column connection development and lower performance since CFT column is closed cross-section. Especially, the result of the study concerning development of connection details with CFT column and exterior diaphragms are very low in current state. In this study, through developing CFT column-H shape steel beam applicating Y shape plate, set width and depth of Y shape plate which affect structural performance of connection details applicating Y shape plate as main variables, and evaluate structural performance through experiments. And also, design Y shape plate used at experiments as setting allowable stress for tension suggested at design criteria lower than axial force of tension side flange connected Y shape plate, through shape of destruction, verify the structural safety and performance of Y shape plate.

Various Men's Body Shapes and Drops for Developing Menswear Sizing Systems in the United States

  • HwangShin, Su-Jeong;Istook, Cynthia L.;Lee, Jin-Hee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.35 no.12
    • /
    • pp.1454-1465
    • /
    • 2011
  • Menswear body types are often labeled on garments (to indicate how the garments are designed to fit) with indicators of a size category such as regular, portly, and stout, athletic, or big and tall. A drop (relationships between the chest and waist girths) is related to the fit of a tailored suit. However, current standards are not designed for various drops or body types. There is not enough information of categorizing men's body shapes for the apparel sizing systems. In this article, a set of men's data from SizeUSA sizing survey was analyzed to investigate men's body shapes and drops. Factor analysis and a cluster analysis method were used to categorize men's body shapes. In the results, twenty-five variables were selected through the factor analysis and found four factors: girth factor, height factor, torso girth factor, and slope degree factor. According to the factor and cluster analysis, various body shapes were found: Slim Shape (SS - tall ectomorphy), Heavy Shape (HS - athletic, big & tall, endomorphy and mesomorphy), Slant Inverted Triangle Shape (SITS - regular, slight ectomorphy and slight mesomorphy weight range from normal to slightly overweight), Short Round Top Shape (SRTS - portly and stout, endomorphy). Body shapes were related to fitting categories. SS and HS were related to big & tall fitting category. SITS was related to regular. SRTS was related to portly and stout. Shape 1 (31%) and Shape 2 (26%) were related to current big & tall category. Shape 3 (34%) were related to regular. Shape 4 (9%) were in portly and stout category. ASTM D 6240 standard was the only available standard that presented a regular fitting category. Various drops were found within a same chest size group; however, this study revealed great variances of drops by body shape.

Structural Model Analysis of Changes in Women's Quality of Life and Life Satisfaction by Body Shape Management

  • Kim, Jae-Nam
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.10
    • /
    • pp.211-219
    • /
    • 2020
  • The purpose of this study is to conduct body shape management on women for a certain period of time to determine the structural relationship between the latent variables of life habits, social support, and life satisfaction and the impact on the quality of life. Body shape management was performed with chiropractic adjustments and myofascial relaxation therapy, and a physical therapist with 25 years of experience was used as an expert. The subject of the study was a sample of women in their 20s to 60s residing in Gwangju Metropolitan City, and women who participated in body shape management procedures more than 20 times for the study were asked to fill out a questionnaire using a self-evaluation writing method. The final analysis target was 100 people who made it reasonable to analyze the data. As a result of the study, it was found that the quality of life of women related to health can vary depending on the presence and degree of body shape management. In addition, the degree of life satisfaction varies according to the level of lifestyle and social support, and the direct, indirect, and total effects of the latent variables related to the quality of life were all significant. In this study, the usual body shape management that can improve the quality of life of women gives meaning to the opportunity for women to have desirable lifestyle and to give them a recognition that values quality of life.