• Title/Summary/Keyword: Shape Model

Search Result 5,488, Processing Time 0.028 seconds

Effect of the Shape of Absorbing Revetment on Wave Overtopping Rate (소파호안의 형상이 월파량에 미치는 영향)

  • Hur, Dong-Soo;Choi, Dong-Seok;Choi, Sun-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.7-12
    • /
    • 2008
  • The present study numerically investigates the effect of the shape of absorbing revetment on wave overtopping rate under regular and irregular incident waves. At first, the numerical model developed by Hur and Choi(2008), which considers the flow through a porous medium with inertial, laminar and turbulent resistance terms, directly simulates Wave-Structure-Sandy seabed interaction and can determine the eddy viscosity with LES turbulent model in 2-Dimensional wave field (LES-WASS-2D), is validated when compared to experimental data. Numerical simulations are then performed to examine the effect of the shape of absorbing revetment and incident wave conditions on wave overtopping rate. The numerical result shows that the wave overtopping rate decreases with the slope gradient of absorbing revetment under both regular and irregular waves. In addition, the effects of mean grain size and porosity of absorbing revetment, incident wave period and crest height on wave overtopping rate are discussed.

Implementation of Content-based Image Retrieval System using Color Spatial and Shape Information (칼라 공간과 형태 정보를 이용한 내용기반 이미지 검색 시스템 구현)

  • Ban, Hong-Oh;Kang, Mun-Ju;Choi, Heyung-Jin
    • The KIPS Transactions:PartB
    • /
    • v.10B no.6
    • /
    • pp.681-686
    • /
    • 2003
  • In recent years automatic image indexing and retrieval have been increasingly studied. However, content-based retrieval techniques for general images are still inadequate for many purposes. The novelty and originality of this thesis are the definition and use of a spatial information model as a contribution to the accuracy and efficiency of image search. In addition, the model is applied to represent color and shape image contents as a vector using the method of image features extraction, which was inspired by the previous work on the study of human visual perception. The indexing scheme using the color, shape and spatial model shows the potential of being applied with the well-developed algorithms of features extraction and image search, like ranking operations. To conclude, user can retrieved more similar images with high precision and fast speed using the proposed system.

Estimation of the 3-D Shape Surfaces with Specular Reflections

  • Kim, Jee Hong
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.6
    • /
    • pp.672-678
    • /
    • 2014
  • We propose a method to estimate the 3-D shape of surfaces with specular reflection, using a model of the difference in appearance between images reflected from a flat surface and a curved surface. First, we analyze the geometry of spatial reflection from a specular surface and how reflected light varies due to a curved surface. This is used to estimate 3-D shape. The proposed method is shown to be effective in experiments using illumination from spatially distributed light sources and a camera capturing the reflected light from curved, specular surfaces.

Workpart and Setup Planning for NC Machining of Prismatic Model:Feature-Based Approach (형상인식에 의한 다면체모델의 NC 가공을 위한 소개 및 셋업계획)

  • 지우석;서석환;강재관
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.1078-1083
    • /
    • 1992
  • Extracting the process planning information from the CAD data is the key issue in integrated CAD/CAM system. In this paper, we develop algorithms for extracting the shape and setup configuration for NC machining of prismatic parts. In determining the workpart shape, the minimum-enclosing condept is applied so that the material waste is minimized. To minimize the number of setups, feature based algorithm is developed considrint the part shape, tool shape, and tool approach direction. The validity and effectiveness of the developed algorithms were tested by computer simulations.

  • PDF

Practical Determination of the Die Shape Using a Streamline in Axisymmetric Extrusion (유동경로를 이용한 축대칭 금형 형상의 실용적 ,결정)

  • 이용신
    • Transactions of Materials Processing
    • /
    • v.10 no.2
    • /
    • pp.111-114
    • /
    • 2001
  • A new, simple method to determine the die shape using a streamline in extrusion is presented. This method assumes that a billet deforms naturally to minimize the energy input for the given process condition. Then, an optimal die shape can be determined along a streamline. Extrusion operations with two types of materials, strain-hardening material and strain-rate hardening material, are examined using this method. Predictions with the proposed method are compared with those by the previous optimizing model to show its efficiency.

  • PDF

Numerical simulation of the influence of interaction between Qanat and tunnel on the ground settlement

  • Sarfarazi, Vahab;Tabaroei, Abdollah
    • Geomechanics and Engineering
    • /
    • v.23 no.5
    • /
    • pp.455-466
    • /
    • 2020
  • This paper presents analysis of the interaction between tunnel and Qanat with a particular interest for the optimization of Qanat shape using the discrete element code, PFC2D, and the results will be compared with the FEM results of PLAXIS2D. For these concerns, using software PFC2D based on Discrete Element Method (DEM), a model with dimension of 100m 100 m was prepared. A circular tunnel with dimension of 9 m was situated 20 m below the ground surface. Also one Qanat was situated perpendicularly above the tunnel roof. Distance between Qanat center and ground surface was 8 m. Five different shapes for Qanat were selected i.e., square, semi-circular, vertical ellipse, circular and horizontal ellipse. Confining pressure of 5 MPa was applied to the model. The vertical displacement of balls situated in ground surface was picked up to measure the ground subsidence. Also two measuring circles were situated at the tunnel roof and at the Qanat roof to check the vertical displacements. The properties of the alluvial soil of Tehran city are: γdry=19 (KN/㎥), E= 750 (kg/㎠), ν=0.35, c=0.3(kg/㎠), φ=34°. In order to validate the DEM results, a comparison between the numerical results (obtained in this study) and analytical and field monitoring have been done. The PFC2D results are compared with the FEM results. The results shows that when Qanat has rectangular shape, the tensile stress concentration at the Qanat corners has maximum value while it has minimum value for vertical ellipse shape. The ground subsidence for Qanat rectangular shape has maximum value while it has minimum value for ellipse shape of Qanat. The vertical displacements at the tunnel roof for Qanat rectangular shape has maximum value while it has minimum value for ellipse shape of Qanat. Historical shape of Qante approved the finding of this research.

NUMERICAL STUDY OF A CENTRIFUGAL PUMP PERFORMANCE WITH VARIOUS VOLUTE SHAPE (볼루트의 형상 변화가 원심펌프 성능에 미치는 영향에 대한 수치해석)

  • Lee, J.H.;Hur, N.;Yoon, I.S.
    • Journal of computational fluids engineering
    • /
    • v.20 no.3
    • /
    • pp.35-40
    • /
    • 2015
  • Centrifugal pumps consume considerable amounts of energy in various industrial applications. Therefore, improving the efficiency of pumps machine is a crucial challenge in industrial world. This paper presents numerical investigation of flow characteristics in volutes of centrifugal pumps in order to compare the energy consumption. A wide range of volumetric flow rate has been investigated for each case. The standard k-${\varepsilon}$ is adopted as the turbulence model. The impeller rotation is simulated employing the Multi Reference Frames(MRF) method. First, two different conventional design methods, i.e., the constant angular momentum(CAM) and the constant mean velocity (CMV) are studied and compared to a baseline volute model. The CAM volute profile is a logarithmic spiral. The CMV volute profile shape is an Archimedes spiral curve. The modified volute models show lower head value than baseline volute model, but in case of efficiency graph, CAM curve has higher values than others. Finally for this part, CAM curve is selected to be used in the simulation of different cross-section shape. Two different types of cross-section are generated. One is a simple rectangular shape, and the other one is fan shape. In terms of different cross-section shape, simple rectangular geometry generated higher head and efficiency. Overall, simulation results showed that the volute designed using constant angular momentum(CAM) method has higher characteristic performances than one by CMV volute.

A Subspace-based Array Shape Estimation Method Using Nearfield Source Model (근거리 신호 모델을 이용한 부공간 근사 기반의 어레이 형상 추정 기법)

  • 박희영;오원천;강현우;윤대희;이충용
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.2
    • /
    • pp.125-133
    • /
    • 2004
  • Most of the way shape estimation method using reference sources assume that the reference sources are in the farfield. That is, the reference sources are assumed to be far from the array. However, in applications of the array with reference sources, the reference sources are not far from the way, so that in practical ocean environments, the conventional method using farfield source model fail to estimate the positions of the hydrophones. In this paper, based on the nearfield source model, a subspace-based array shape estimation method was proposed. In the proposed method, nearfield reference source is modeled using the differential time delay at each hydrophone, and nearfield parameters are derived. Using these parameters, a subspace-based array shape estimation method that generalizes the existing farfield subspace fitting method which can work regardless of the range of the source is proposed. The Cramer-Rao lower bound for the proposed method is investigated. The results of the numerical experiments indicate that the proposed method performs well in estimating the shape of a perturbed way regardless of the ranges of the reference sources.

Mobile Robot Control using Hand Shape Recognition (손 모양 인식을 이용한 모바일 로봇제어)

  • Kim, Young-Rae;Kim, Eun-Yi;Chang, Jae-Sik;Park, Se-Hyun
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.4
    • /
    • pp.34-40
    • /
    • 2008
  • This paper presents a vision based walking robot control system using hand shape recognition. To recognize hand shapes, the accurate hand boundary needs to be tracked in image obtained from moving camera. For this, we use an active contour model-based tracking approach with mean shift which reduces dependency of the active contour model to location of initial curve. The proposed system is composed of four modules: a hand detector, a hand tracker, a hand shape recognizer and a robot controller. The hand detector detects a skin color region, which has a specific shape, as hand in an image. Then, the hand tracking is performed using an active contour model with mean shift. Thereafter the hand shape recognition is performed using Hue moments. To assess the validity of the proposed system we tested the proposed system to a walking robot, RCB-1. The experimental results show the effectiveness of the proposed system.

A Finite Element Beam Model Using Shape Functions that Satisfy the Euler Equations (Euler 방정식(方程式)을 만족(滿足)하는 형상함수(形狀凾數)를 이용(利用)한 보 유한요소모(有限要素)모델)

  • Kim, Gyong Chan;Shin, Young Shik;Kim, Sung Wook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.6 no.1
    • /
    • pp.61-68
    • /
    • 1986
  • A set of the shape functions which perfectly satisfy the homogeneous Euler Equations has been proposed for deep beam problems. A finite element beam model using the proposed shape functions has been derived by the Galerkin weighted residual method and used to analyze the numerical examples without reduced shear integration, to show the accuracy and efficiency of the proposed shape functions. The result shows that the finite element model using the proposed shape functions gives very accurate solutions for both static and free vibration analyses. The concept of the proposed shape functions is thought to be applied for the finite element analysis of the elasto-static problems.

  • PDF