• 제목/요약/키워드: Shape Model

검색결과 5,488건 처리시간 0.03초

FSI 해석에 의한 비정형 초고층 빌딩의 풍응답 특성에 관한 연구 (A Study on the Wind-Induced Response Characteristics of Freeform Shaped Tall Building using FSI Analysis)

  • 박성철;김효진;한상을
    • 한국전산구조공학회논문집
    • /
    • 제27권4호
    • /
    • pp.223-230
    • /
    • 2014
  • 본 논문에서는 FSI해석을 이용하여 비정형 초고층 빌딩의 풍응답 특성을 연구하였다. 해석모델은 Twist모델이며, 뒤틀림 각도와 풍가속도의 상관관계에 대해 연구 중점을 두었다. 먼저 단방향 해석을 수행하여 100년 재현주기 풍속에 대한 최대 횡 변위를 구하고, 제한조건을 만족하는 탄성계수를 산출한다. 그리고 양방향 해석을 수행, 시간이력해석을 통해 산출된 탄성계수와 임의의 밀도를 가지는 풍가속도를 예측하게 된다. 정방형 모델은 높이 400m, 변장비 1:1, 세장비 8로 설정, 뒤틀림 모델은 0도에서 90도까지 15도 간격으로, 90도에서 360도까지 90도 간격으로 비틀어 회전시켰다. 형상에 따른 풍가속도 예측 결과, 정방형 모델이 뒤틀림 모델보다 크게 산출되어 풍진동 영향에 더 민감한 것을 검증하였다.

단순 측면충돌해석에 의한 센터필러의 최적설계 (Optimum Design of a Center-pillar Model with a Simplified Side Impact Analysis)

  • 배기현;송정한;허훈;김세호
    • 한국자동차공학회논문집
    • /
    • 제13권6호
    • /
    • pp.84-92
    • /
    • 2005
  • This paper is concerned with optimum design of a center-pillar assembly induced by the high-speed side impact of the vehicle. In order to simulate deformation behavior of the center-pillar assembly, simplified finite element model of the center-pillar and a moving deformable barrier are developed based on results of the crash analysis of a full vehicle model. In optimization of the deformation shape of the center-pillar, S-shaped deformation is targeted to guarantee reduction of the injury level of a driver dummy in the crash test. Tailor-welded blanks are adopted in the simplified center-pillar model to control the deformation shape of the center-pillar assembly. The thickness of each part which constitutes the simplified model is selected as a design parameter. The thickness of parts which have significant effect on the deformation mechanism are selected as design parameters with sensitivity analysis based on the design of experiment technique. The objective function is constructed so as to minimize the weight and lead to an S-mode deformation shape. The result shows that the simplified model can be utilized effectively for optimum design of the center-pillar members with remarkable saving of computing time.

Grouping stocks using dynamic linear models

  • Sihyeon, Kim;Byeongchan, Seong
    • Communications for Statistical Applications and Methods
    • /
    • 제29권6호
    • /
    • pp.695-708
    • /
    • 2022
  • Recently, several studies have been conducted using state space model. In this study, a dynamic linear model with state space model form is applied to stock data. The monthly returns for 135 Korean stocks are fitted to a dynamic linear model, to obtain an estimate of the time-varying 𝛽-coefficient time-series. The model formula used for the return is a capital asset pricing model formula explained in economics. In particular, the transition equation of the state space model form is appropriately modified to satisfy the assumptions of the error term. k-shape clustering is performed to classify the 135 estimated 𝛽 time-series into several groups. As a result of the clustering, four clusters are obtained, each consisting of approximately 30 stocks. It is found that the distribution is different for each group, so that it is well grouped to have its own characteristics. In addition, a common pattern is observed for each group, which could be interpreted appropriately.

A Study on the Basic Pattern of Bodice block for Adult Women in China - Focusing on Women in 20s Residing in Beijing and Shanghai -

  • Sohn, Hee-Soon;Kang, Yeon-Kyung
    • 패션비즈니스
    • /
    • 제9권3호
    • /
    • pp.64-87
    • /
    • 2005
  • The purpose at this study is to develop the appropriate bodice model for Chinese women in order to contribute to the improvement of fitness at clothing products that are exported to China. The sample group was the subject of 149 persons with the standard body shape at 19-24 years old women who reside in Beijing and Shanghai, China. The data analysis is processed for statistics using SPSSWIN 10.0 PROGRAM, and the used analysis methods are technical statistics analysis, factor analysis, group analysis, and one-way ANOVA. The outcome of this study is summarized as follows. 1. Prior to develop the tight-fitting shape of bodice model, the body classification approach by the posture and type of bending and stretching is selected to use 6 index items, and the body types are classified into bent body, right body, and pull-back body. 2. The average body size of standard body shape had 3 times of wearing experiment based on the tight-fitting shape of ESMOD bodice block drawing, and the system was corrected and supplemented to present the final bodice block drawing. 3. Comparisons have been made based on the center front line, center back line and chest circumference for each of existing bodice block for Chinese women, existing bodice block for Korean women and the combination of the bodice block under this study.

Active shape change of an SMA hybrid composite plate

  • Daghia, Federica;Inman, Daniel J.;Ubertini, Francesco;Viola, Erasmo
    • Smart Structures and Systems
    • /
    • 제6권2호
    • /
    • pp.91-100
    • /
    • 2010
  • An experimental study was carried out to investigate the shape control of plates via embedded shape memory alloy (SMA) wires. An extensive body of literature proposes the use of SMA wires to actively modify the shape or stiffness of a structure; in most cases, however, the study focuses on modeling and little experimental data is available. In this work, a simple proof of concept specimen was built by attaching four prestrained SMA wires to one side of a carbon fiber laminate plate strip. The specimen was clamped at one end and tested in an environmental chamber, measuring the tip displacement and the SMA temperature. At heating, actuation of the SMA wires bends the plate; at cooling deformation is partially recovered. The specimen was actuated a few times between two fixed temperatures $T_c$ and $T_h$, whereas in the last actuation a temperature $T_f$ > $T_h$ was reached. Contrary to most model predictions, in the first actuation the transformation temperatures are significantly higher than in the following cycles, which are stable. Moreover, if the temperature $T_h$ is exceeded, two separate actuations occur during heating: the first follows the path of the stable cycles; the second, starting at $T_h$, is similar to the first cycle. An interpretation of the phenomenon is given using some differential scanning calorimeter (DSC) measurements. The observed behavior emphasizes the need to build a more comprehensive constitutive model able to include these effects.

TiNi/Al기 형상기억복합재료의 강도평가를 위한 전문가시스템의 개발 (The Development of Expert System for Strength Evaluation of TiNi Fiber Reinforced Al Matrix Composite)

  • 박영철;이동화;박동성
    • 대한기계학회논문집A
    • /
    • 제28권8호
    • /
    • pp.1099-1108
    • /
    • 2004
  • In this paper, a study on the development of expert system for Al matrix composite with shape memory alloy fiber is performed to evaluate termomechanical behavior and mechanical properties. Expert system is very useful computer-based analysis system designed to make analysis technique and knowledge conveniently available to a lot of fabricable condition. In the developed system, it is possible to predict termomechanical behavior and mechanical properties for other composite with shape memory alloy fiber. The smartness of the shape memory alloy is given due to the shape memory effect of the TiNi fiber which generates compressive residual stress in the matrix material when heated after being prestrained. For finite element analysis, an analytical model is assumed two dimensional axisymmetric model compared of one fiber and the matrix. To evaluate the strength of composite using FEM, the concept of smart composite was simulated on computer Thus, in this paper, the FEA was carried out at two critical temperature conditions; room temperature and high temperature(363k). The finite element analysis result was compared with the test result for the analysis validity.

시멘트 비접착 인공 고관절의 주대 형상 최적 설계 (Optimal Design of Stem Shape for Artificial Hip Prosthesis with Unbonded Cement Mantle)

  • 최돈옥;윤용산
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.932-938
    • /
    • 2001
  • This study is concerned with the shape optimization of stem for the artificial hip prosthesis with unbonded cement mantle. The artificial hip prosthesis with unbonded cement mantle allows a stem to slip on cement mantle because of polished stem surface. Unbonded cement mantle type has several advantages compared with bonded cement mantle type, for example, small micro motion, preventing stress shielding and so on. In this study, 2-dimensional axisymmetric model was developed with considering characteristics of unbonded cement mantle. Moreover, optimal shape of stem was obtained by using feasible direction method. The objective of this optimization is maximizing supported vertical loading. The slip motion and stresses of stem, cement mantle and bone is used for constraints. The optimal shape which obtained by this study has slope of 0.15 in proximal part and maintains the width about 5mm in distal part In addition, simplified 3-dimensional analysis which applying optimal shape is carried out. The result of 3-dimensional analysis showed that optimal shape has some advantages for cement mantle stress. However, more realistic 3-dimensional analysis which including bending effect, complex geometries etc. is needed in further research.

  • PDF

접착이음의 강도평가에 대한 해석 (Analysis for Strength Estimation of Adhesive Joints)

  • 박성완
    • 한국공작기계학회논문집
    • /
    • 제14권5호
    • /
    • pp.62-73
    • /
    • 2005
  • The objects of this research are to establish the criteria of peel occurrence considering the shape of bond terminus and to compare the strength properties of adhesive joint of different three type such as butt joint, T-shape, and single lap Joints. The criteria of peel occurrence at the bond terminus was suggested. Peel loads of three type adhesive joint (butt Joint, T-shape specimen, single lap joint) were determined from tensile tests. Principal stress distributions of these joints were determined from finite element method analysis. Then, peel occurrence was estimated with stress singularity factor$(K_{prin})$ when the terminus shape was square, with average principal stress when the terminus shape was rounded. The conclusions are summarized as follows; (1) In the non-filleted model(e.g., butt joint, T-shape specimen), principal stress shows singularity at the bond terminus, intensity of stress(principal stress) singularity $(K_{prin})$ can use as the criteria of peel occurrence at the bond terminus. (2) In the filleted model(e.g., single lap joint), principal stress has not affected singularity at the bond terminus. Average principal stress$(K_{av})$ can use as the criteria of peel occurrence at the bond terminus.

토목섬유를 이용한 확대기초의 설계법 연구 (Design Method of Spread Footing Reinforced by Geosynthetics)

  • 주재우;이승은;서계원;박종범;최현기
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.659-664
    • /
    • 2002
  • New design method about the spread footing was developed using only soil and geosynthetics. This footing will be able to replace the concrete footing at constructing the foundation of small structures. As shown in Fig-3(b), after excavating the ground in semicircular shape, geosynthetics is layed on the semicircular shape of ground and let the soil filled. Geosynthetics of upper side are fixed tightly each other It can be thought to be a kind of great bag with semicircular shape. We performed two kinds of experiments to investigate the deformation and the failure shape of spread footing reinforced by geosynthetics. First, after making model ground with aluminium rods, the lattice point of 1cm ${\times}$ 1cm size of the side of aluminium rods have been painted with various kinds of colors. We have observed the movement of painted rods during loading. Second, we have taken pictures about failure process using B-shutter method. Analysing the behavior of model ground reinforced in a semicircular shape, we could know the reinforced one has much greater and wider plastic area than unreinforced one at failure. Based on the experimental results, new design method was proposed, which has a possibility to apply at the field works.

  • PDF

고주파 지진에 의한 곡선 교량의 지진 취약도 분석 (Seismic Fragility Analysis of Curved Bridge under High Frequency Earthquakes)

  • 전준태;주부석;손호영
    • 한국재난정보학회 논문집
    • /
    • 제16권4호
    • /
    • pp.806-812
    • /
    • 2020
  • 연구목적: I-Shape 거더를 갖는 곡선교량의 지진 안전성에 미치는 고주파 지진의 영향성을 분석하기 위해 지진 취약도 평가를 수행하였다. 연구방법: I-Shape 단면을 갖는 곡선교량의 선형탄성 유한요소 모델을 구축하고 고주파 영역의 인공지진파를 12개 생성하여 시간이력해석 및 지진 취약도 평가를 수행하였다. 연구결과:변위응답(LS1, LS2)에 대한 한계상태는 0.1g를 넘어서면서 파괴가 발생하였으며 거더의 응력응답 한계상태의 경우 0.2g를 넘어서면서 정해진 한계상태를 초과하는 것으로 나타났다. 결론: 현재 구축된 곡선교량 모델의 경우 고주파 지진에 민감하게 반응하는 것으로 판단된다.