• Title/Summary/Keyword: Shape Model

Search Result 5,454, Processing Time 0.032 seconds

STUDY ON AUTOMATIC 3D WING SHAPE MODELING AND GRID GENERATION (3차원 날개 모델링 및 격자 생성 자동화에 대한 연구)

  • Ryu, G.Y.;Kim, B.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.125-129
    • /
    • 2009
  • In this paper automatic 3D wing shape modeling program is introduced. The program is developed in Visual Basic based on Net Framework 3.5 environment by using CATIA COM Library, and it is used together with CATIA system to model 3D wings with or without flaps. With this program users can easily construct wing models by specifying geometry parameters which are usually design variables with the aid of easy-to-use GUI environment, and specifying sectional airfoil data is done either by using analytic shape functions such as NACA series airfoils or by providing input files with point data describing the airfoil shape. When all the input parameters are provided, users can either work further with the model in the CATIA system which would be automatically started by the program or save the resultant model in the format of users choice. Unstructured grid generation program is also briefly described which can make grid generation task for a 3D wing easy and efficient one when used together with the wing modeling program by choosing STL format as the model's output format.

  • PDF

A Study on Thermal Deformation due to Fan Shape of Hair Dryer (헤어드라이기의 팬 형상에 따른 열변형에 관한 연구)

  • Han, Moonsik;Cho, Jaeung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.3
    • /
    • pp.82-87
    • /
    • 2017
  • This study investigates thermal deformation due to fan shape of a hair dryer. In this study, thermal analysis showed that the shape of an electric fan results in lower temperature than that of a sieve frame. Among the shapes of electric fans, the temperature change decreases as the number of wings decreases. As a result of thermal deformation, model 4 (sieve frame shape) showed increased change of deformation compared to models 1, 2, and 3 (with electric fan shapes). Thus, the model 1 dryer with the sieve frame shape is shown to have the least durability among models 1, 2, 3, and 4. It is thought that the analysis results of this study can be applied to durability improvement and safer design of hair dryers.

Burr and shape distorion in micro-grooving of optical componets (광학부품용 비세홈의 금형가공에 있어서 버와 형상변형에 관한 연구)

  • 임한석;안중환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.53-57
    • /
    • 1996
  • The side burrs and shape distortion resulting from the micromachining of an array of V-shape microgrooves in optical components were experimentally invesigated and a simplified model for their formation is proposed. Burr/shpae distortion should be kept to a minimum level since they degrade the characteristics and performance of these parts. The focus of this study is on the influence of depth of cut and workpiece material. The workpiece materials use were brass, bronze and copper. From the obsevation of the chip shape and burr/shape distortion, the proposed model, that the compressive force at the cutting edge causess the ductile uncut chip material to flow plastically outward toward the free surface to result in a burr, was verified.

  • PDF

Development of a Structural Shape Optimization Scheme Using Selective Element Method (선택적 요소방법을 이용한 구조 형상최적 설계기법의 개발)

  • 심진욱;박경진
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.12
    • /
    • pp.2101-2109
    • /
    • 2003
  • Structural shape optimization offers engineers with numerous advantages in designing shapes of structures. However, excessive relocation of nodes often cause distortion of elements and eventually result in degrade of accuracy and even halts of processes. To overcome these problems, an effective method, Selective Element Method(SEM), has been developed. This paper describes the basic concept of SEM and processes to implement into real-world problem. 2-D and 3-D shape optimization problems have been chosen to show the performance of the method. Though some limitations have been found, it was concluded that SEM can be useful in general shape optimization and even in some special cases such as decision of optimal weld line location.

Ski-end shape control based on the model in heavy plate mill (후판 압연공정에서의 판 선단부 형상제어 연구)

  • Chun, M.S.;Park, H.D.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.93-95
    • /
    • 2007
  • Studies on ski-end shape control at the top end of rolling plate in heavy thick plate mill by using FEM analysis and measuring system have been performed. Plate shape behaviour at the top-end on rolling by the two different methods in finishing rolling process has been observed. One is to minimize the height of ski-end by using pass line based on the relational model between shape factor and pick-up and the other one is to prevent turn down problem caused by the impact between table roller and down bended plate on rolling by using roll speed difference. To minimize the height of ski-end, the prediction models based on the FEM analysis and measuring data was developed. The control method of ski - end shape on finishing rolling process was applied in actual mill and the height of ski-end was reduced by about 50% compared with conventional operation.

  • PDF

Prediction of Shape Recovery for Ni-Ti SMA Wire after Drawing (Ni-Ti 형상기억합금 선재의 인발 공정 후 형상회복 예측에 관한 연구)

  • Kim, S.H.;Lee, K.H.;Lee, S.B.;Yeom, J.T.;Park, C.H.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.22 no.8
    • /
    • pp.470-476
    • /
    • 2013
  • The aim of the current study was to predict shape recovery behavior of Ni-Ti shape memory alloy (SMA) wire after loading-unloading and after wire drawing. The superelasticity of SMA was analyzed by a hyper-elastic model for the Mullins effect using ABAQUS. Firstly, tensile tests and loading-unloading tests of the Ni-Ti SMA wire with a diameter 1.0 mm were performed using an MTS servo-hydraulic tester. The parameters for the Mullins effect were computed by ABAQUS based on curve-fitting of the loading-unloading test data. The proposed FE-model predicted the shape recovery of Ni-Ti SMA after wire drawing. Finally, the effectiveness of the model was verified by drawing experiments. The wire drawing experiments using the Ni-Ti SMA were conducted on a drawing machine(1ton, 50mm/s). In order to evaluate the shape recovery of Ni-Ti SMA, the drawn wires are annealed for 30min at $450^{\circ}C$.

Optimal placement of piezoelectric curve beams in structural shape control

  • Wang, Jian;Zhao, Guozhong;Zhang, Hongwu
    • Smart Structures and Systems
    • /
    • v.5 no.3
    • /
    • pp.241-260
    • /
    • 2009
  • Shape control of flexible structures using piezoelectric materials has attracted much attention due to its wide applications in controllable systems such as space and aeronautical engineering. The major work in the field is to find a best control voltage or an optimal placement of the piezoelectric actuators in order to actuate the structure shape as close as possible to the desired one. The current research focus on the investigation of static shape control of intelligent shells using spatially distributed piezoelectric curve beam actuators. The finite element formulation of the piezoelectric model is briefly described. The piezoelectric curve beam element is then integrated into a collocated host shell element by using nodal displacement constraint equations. The linear least square method (LLSM) is employed to get the optimum voltage distributions in the control system so that the desired structure shape can be well matched. Furthermore, to find the optimal placement of the piezoelectric curve beam actuators, a genetic algorithm (GA) is introduced in the computation model as well as the consideration of the different objective functions. Numerical results are given to demonstrate the validity of the theoretical model and numerical algorithm developed.

Three-dimensional Model Generation for Active Shape Model Algorithm (능동모양모델 알고리듬을 위한 삼차원 모델생성 기법)

  • Lim, Seong-Jae;Jeong, Yong-Yeon;Ho, Yo-Sung
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.6 s.312
    • /
    • pp.28-35
    • /
    • 2006
  • Statistical models of shape variability based on active shape models (ASMs) have been successfully utilized to perform segmentation and recognition tasks in two-dimensional (2D) images. Three-dimensional (3D) model-based approaches are more promising than 2D approaches since they can bring in more realistic shape constraints for recognizing and delineating the object boundary. For 3D model-based approaches, however, building the 3D shape model from a training set of segmented instances of an object is a major challenge and currently it remains an open problem in building the 3D shape model, one essential step is to generate a point distribution model (PDM). Corresponding landmarks must be selected in all1 training shapes for generating PDM, and manual determination of landmark correspondences is very time-consuming, tedious, and error-prone. In this paper, we propose a novel automatic method for generating 3D statistical shape models. Given a set of training 3D shapes, we generate a 3D model by 1) building the mean shape fro]n the distance transform of the training shapes, 2) utilizing a tetrahedron method for automatically selecting landmarks on the mean shape, and 3) subsequently propagating these landmarks to each training shape via a distance labeling method. In this paper, we investigate the accuracy and compactness of the 3D model for the human liver built from 50 segmented individual CT data sets. The proposed method is very general without such assumptions and can be applied to other data sets.

3D Shape Comparison Using Modal Strain Energy (모달 스트레인 에너지를 이용한 3차원 형상 비교)

  • 최수미
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.3
    • /
    • pp.427-437
    • /
    • 2004
  • Shape comparison between 3D models is essential for shape recognition, retrieval, classification, etc. In this paper, we propose a method for comparing 3D shapes, which is invariant under translation, rotation and scaling of models and is robust to non-uniformly distributed and incomplete data sets. first, a modal model is constructed from input data using vibration modes and then shape similarity is evaluated with modal strain energy. The proposed method provides global-to-local ordering of shape deformation using vibration modes ordered by frequency Thus, we evaluated similarity in terms of global properties of shape without being affected localised shape features using ordered shape representation and modal strain one energy.

  • PDF

Modified sigmoid based model and experimental analysis of shape memory alloy spring as variable stiffness actuator

  • Sul, Bhagoji B.;Dhanalakshmi, K.
    • Smart Structures and Systems
    • /
    • v.24 no.3
    • /
    • pp.361-377
    • /
    • 2019
  • The stiffness of shape memory alloy (SMA) spring while in actuation is represented by an empirical model that is derived from the logistic differential equation. This model correlates the stiffness to the alloy temperature and the functionality of SMA spring as active variable stiffness actuator (VSA) is analyzed based on factors that are the input conditions (activation current, duty cycle and excitation frequency) and operating conditions (pre-stress and mechanical connection). The model parameters are estimated by adopting the nonlinear least square method, henceforth, the model is validated experimentally. The average correlation factor of 0.95 between the model response and experimental results validates the proposed model. In furtherance, the justification is augmented from the comparison with existing stiffness models (logistic curve model and polynomial model). The important distinction from several observations regarding the comparison of the model prediction with the experimental states that it is more superior, flexible and adaptable than the existing. The nature of stiffness variation in the SMA spring is assessed also from the Dynamic Mechanical Thermal Analysis (DMTA), which as well proves the proposal. This model advances the ability to use SMA integrated mechanism for enhanced variable stiffness actuation. The investigation proves that the stiffness of SMA spring may be altered under controlled conditions.