• 제목/요약/키워드: Shape Memory effect

검색결과 214건 처리시간 0.026초

형상기억합금을 이용한 3 차원 비선형 트러스 지능작동기 해석 (Analysis of 3-D non-linear truss smart actuator using SMA)

  • 양성필;김상헌;리녕학;류정현;조맹효
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 춘계학술대회논문집
    • /
    • pp.557-561
    • /
    • 2008
  • Shape memory alloys (SMA) have interesting features which are the superelastic effect (SE), shape memory effect (SME), two-way SME (TWSME), and so on. These are utilized in actuation factor. The thermo-mechanical constitutive equations of SMA proposed by Lagoudas et al. were employed in the present study for simulating SMA truss structures. The constitutive equation includes the necessary internal variables to account for the material transformations and is utilized in the non-linear finite element procedure of three dimensional truss structures that composed SMA bar (wholly or partially). In this study, we observed which element should be actuated to get a desired shape (actuation shape) from computational analysis. To reach this goal, we apply SMA constitutive equation to non-linear finite element formulation. And then, we simulate two-way shape memory effect as well as superelastic effect of various three dimensional truss using SMA.

  • PDF

형상기억합금 튜브의 buckling 거동 (Buckling behavior of shape-memory alloy tube)

  • 최점용
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.378-381
    • /
    • 2008
  • The buckling behavior of cylindrical shape-memory alloy and aluminum tube is investigated at room temperature using a split Hopkinson pressure bar and an Instron hydraulic machine with a specially designed recording system. The shape-memory alloy at superelastic property regime buckles gradually in quasi-static loading, and fully recovers upon unloading. However, the buckling of aluminum tube is sudden and catastrophic, and shows permanent deformation. This gradual buckling of shape-memory alloy is associated with the forward and reverse transformation of stress-induced martensite and seems to have a profound effect on the unstable deformation of tube structures made from shape-memory alloy.

  • PDF

Mechanical Behavior of Shape Memory Fibers Spun from Nanoclay-Tethered Polyurethanes

  • Hong, Seok-Jin;Yu, Woong-Ryeol;Youk, Ji-Ho
    • Macromolecular Research
    • /
    • 제16권7호
    • /
    • pp.644-650
    • /
    • 2008
  • This study examined the effect of nanoclays on the shape memory behavior of polyurethane (PU) in fibrous form. A cation was introduced into the PU molecules to disperse the organo-nanoclay (MMT) into poly($\varepsilon$-caprolactone) (PCL)-based PU (PCL-PU). The MMT/PCL-PU nanocomposites were then spun into fibers through melt-processing. The shape memory performance of the spun fibers was examined using a variety of thermo-mechanical tests including a new method to determine the transition temperature of shape memory polymers. The MMTs showed an improved the fixity strain rate of the MMT /PCL- PU fibers but a slight decrease in their recovery strain rate. This was explained by the limited movement of PU molecules due to the presence of nanoclays. The shape memory performance of the MMT/PCL-PU fibers was not enhanced significantly by the nanoclays. However, their recovery power was improved significantly up to a strain of approximately 50%.

TiNi/A16061 형상기억복합재료의 미세조직 및 피로특성에 관한 연구 (A Study on the Microstructure and Fatigue Properties of TiNi/A16061 Shape Memory Composite)

  • 윤두표;박영철;김순국;이준희;이규창
    • 한국재료학회지
    • /
    • 제8권11호
    • /
    • pp.993-998
    • /
    • 1998
  • 본 연구는 형상기억합금을 이용하여 제조한 신소재 중의 하나인 형상기억복합재료를 소개하고자 한다. 이 복합재료는 TiNi 섬유의 형상기억효과로 금속복합재료의 취약점이라 할 수 있는 기지와 섬유간의 열팽창차이로 인한 인장잔류응력을 제거하고 기지내에 압축잔류응력을 발생시켜 높은 인장강도를 갖는다. 따라서 본 연구에서는 용탕단조법으로 복합재료를 제조한 후 미세조직을 관찰하고 TiNi 섬유의 역변태온도 이상에서 피로실험을 수행하여 복합재료의 피로특성을 검토하였다. 이 결과 363K에서의 피로균열전파제어효과는 섬유체적률과 예변형에 의하여 증가된다.

  • PDF

TiNi/Al 6061 형상기억복합재료의 기계적특성에 관한 실험 및 해석적 평가 (The Evaluation of Mechanical Properties of TiNi/Al 6061 Shape Memory Composites by Using Experimental and Finite Element Analysis)

  • 박동성;박영철;이동화;이규창
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.687-691
    • /
    • 2001
  • Al alloy matrix composite with TiNi shape memory fiber as reinforcement has been fabricated by hot pressing to investigate mechanical properties. The stress-strain behavior of the composites was evaluated at temperatures between 363K and room temperature as a function of pre-strain by using experimental and finite element analysis, and both cases showed that the tensile stress at 363K was higher than that of the room temperature. Especially, the tensile stress of this composite increases with increasing the amount of pre-strain, and it also depends on the volume fraction of fiber and heat treatment. The smartness of the composite is given due to the shape memory effect of the TiNi fiber which generates compressive residual stress in the matrix material when heated after being pre-strained.

  • PDF

유한요소법을 이용한 TiNi/A16061 형상기억 복합재료의 강도평가 (The Strength Evaluation of TiNi/A16061 Composite by Using Finite Element Method)

  • 박영철;이규창;박동성;이동화
    • 한국정밀공학회지
    • /
    • 제19권2호
    • /
    • pp.72-78
    • /
    • 2002
  • Thermomechanical behavior and mechanical properties of A16061 matrix composite with shape memory alloy(SMA) fiber are studied by using fnite element analysis(FEA). The smartness of the SMA is given due to the shape memory effect of the TiNi fiber which generates compressive residual stress in the matrix material when healed after being prestrained. In this paper, an analytical model is assumed two dimentional axisymetric model of one fiber and around the matrix. To evaluate the strength of composite usig FEM, the concept of smart composite was simulated on computer. The Shape memory effect(SME) simulation is very difficult using FEM because of the nonlinear analysis and the elastic plastic analysis. Thus, in this paper, the FEA was carried out at two critical temperature conditions; room temperature and high temperature(363K). The analysis is compare the finite element analysis result with the test result for the analysis validity.

Ti-Ni형상기억합금의 생체활성에 미치는 표면처리의 영향 (Effect of Surface Treatment on Bioactivity of Ti-Ni Shape Memory Alloys)

  • 최미선;남태현
    • 대한금속재료학회지
    • /
    • 제47권12호
    • /
    • pp.881-886
    • /
    • 2009
  • Research into the replacement of injured systems and tissue in the human body is advancing rapidly. Recently, Ti-Ni shape memory alloys have shown excellent biofunctionality related to their shape memory effect and superelasticity. In this study, the effect of an acid or an alkali treatment on the bioactivity in 49Ti-Ni and 51.5Ti-48.5Ni alloys is investigated in an effort to utilize Ti-Ni alloy as a biomaterial. In addition, the biocompatibility in a SBF solution is assessed through in vitro testing. A porous surface was formed on the surface of both alloys after a chemical treatment. According to the in vitro test, apatite formed on the surfaces of both alloys. The forming rate of apatite in the Ti-rich alloy was faster that in the Ni-rich alloy. The formation of apatite provided proof of the bioactivity of the Ti-Ni alloy. A small quantity of Ni was eluted at the initial stage, whereas Ni was not found for 12 days in the Ti-rich alloy and for 8 days in the Ni-rich alloy. In the case of the treated 51.5Ti-Ni alloy, the shape memory property was worsened but the biocompatibility was improved.

스마트 웨어러블용 NiTi계 선형 형상기억합금을 이용한 소프트 텍스타일 액추에이터 제작 및 동적 특성 측정 (Fabrication of Soft Textile Actuators Using NiTi Linear Shape Memory Alloy and Measurement of Dynamic Properties for a Smart Wearable)

  • 김상운;김상진;김주용
    • 한국의류학회지
    • /
    • 제44권6호
    • /
    • pp.1154-1162
    • /
    • 2020
  • In this study, the soft textile actuator is produced for a smart wearable with the shape memory effects from linear shape memory alloys of Nickel and Titanium using the driving force through the fabrication process. The measurement model was designed to measure dynamic characteristics. The heating method, and memory shape of the linear shape memory alloy were set to measure the operating temperature. A shape memory alloy at 40.13℃, was used to heat the alloy with a power supply for the selective operation and rapid reaction speed. The required amount of current was obtained by calculating the amount of heat and (considering the prevention of overheating) set to 1.3 A. The fabrication process produced a soft textile actuator using a stitching technique for linear shape memory alloys at 0.5 mm intervals in the general fabric. The dynamic characteristics of linear shape memory alloys and actuators were measured and compared. For manufactured soft textile actuators, up to 0.8 N, twice the force of the single linear shape memory alloy, 0.38 N, and the response time was measured at 50 s.

고온에서의 형상기억복합재료의 비파괴평가에 관한 연구 (A Study on Nondestructive Evaluation of Share Memory Alloy Composite at High Temperature)

  • 강동현;이진경;박영철;구후택;이규창
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.186-191
    • /
    • 2001
  • Tensile residual stress happen by difference of coefficients of thermal expansion between fiber and matrix is one of the serious problems in metal matrix composite(MMC). In this study, TiNi alloy fiber was used to solve the problem of the tensile residual stress as the reinforced material. TiNi alloy fiber improves the tensile strength of composite by occurring compressive residual stress in matrix using shape memory effect of it. Pre-strain was added to generate compressive residual stress inside TiNi/A16061 shape memory alloy(SMA) composite. It was also evaluated the effect of compressive residual stress corresponding to pre-strains variation and volume fraction of TiNi alloy. AE technique was used to clarify the microscopic damage behavior at high temperature and the effect of pre-strain difference of TiNi/A16061 SMA composite. In addition, two dimensional AE source location technique was applied to inspect the crack initiation and propagation in composite.

  • PDF

AE 기법을 이용한 TiNi/A16061 형상기억복합재료의 고온파괴특성평가 (Fracture Characteristic of TiNi/A16061 Share Memory Alloy Composite at High Temperature using Acoustic Emission Technique)

  • 이진경;박영철;강동현;박동성;이규창
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.72-77
    • /
    • 2001
  • Tensile residual stress happen by difference of coefficients of thermal expansion between fiber and matrix is one of the serious problems in metal matrix composite(MMC). In this study, TiNi fiber was used to solve the tensile residual stress as the reinforced material. TiNi fiber improves the tensile strength of composite by occurring compressive residual stress in matrix using shape memory effect of it. Pre-strain was added to generate compressive residual stress inside TiNi/A16061 composite. It was also evaluated the effect of compressive residual stress corresponding to pre-strains variation. AE technique was used to clarify the microscopic damage behavior at high temperature and the effect of pre-strain difference of TiNi/A16061 shape memory alloy composite.

  • PDF