• 제목/요약/키워드: Shape Memory effect

검색결과 214건 처리시간 0.022초

변형률 효과를 고려한 형상기억합금의 열-기계적 특성 (Thermomechanical Characteristics of SMAs with Strain-rate Dependence)

  • 노진호
    • 한국항공우주학회지
    • /
    • 제38권2호
    • /
    • pp.129-134
    • /
    • 2010
  • 변형률-속도에 따른 형상기억합금의 열-기계적 특성 변화를 수치적으로 살펴보았다. 변형률 효과를 고려한 형상기억합금 수학 모델을 유도하였고, 해석 알고리즘을 ABAQUS 상용 프로그램에 적용하여 형상기억합금의 열-기계적 특성을 예측하였다. 마르텐사이트 상 변화량과 온도 변화사이의 연성된 열역학적 방정식을 적용하여, 변형률-속도에 따른 형상기억합금의 거동 특성을 살펴보았다. 변형률 효과를 고려함에 따라 형상기억합금의 의탄성 이력 특성이 크게 영향을 받음을 수치해석 결과를 통하여 알 수 있었다.

Ti-50.4at.%Ni합금의 변태거동에 미치는 시효처리의 영향(II) (The Effect of Ageing on the Transformation Behavior of Ti-50.4at.% Ni Alloy(II))

  • 김성진;우흥식;박성범
    • 한국안전학회지
    • /
    • 제20권3호
    • /
    • pp.27-33
    • /
    • 2005
  • The shape memory effect in Ti-50.4at.%Ni alloy after solution treatment at 1273K for 2h and aged at 350, 450, $550^{\circ}C$ for 0.5, 1, 1.5, 2, 4, 10hrs had been investigated by differential scanning calorimetry measurement. It was found that ageing in the temperature range of $350^{\circ}C{\sim}550^{\cric}C$ induced complex transformation behavior, involving the R-phase and multiple-stage martensitic transformation. Usually aged Ni-rich NiTi alloys undergo martensitic transformation on cooling from high temperatures in two step : Austenite to R-phase and then R-phase to Martensite (normal behavior). In sample aged at $350^{\circ}C$ two distinct DSC peaks arised giving evidence of intermediate stages of martensite transformation. This results in the nucleation and growth of coherent $Ni_4Ti_3$-precipitate. These explain all features of the evolution of DSC charts during ageing including the number of distinct DS peaks and their positions.

DO3 CuZnAl 합금에 있어서의 역형상기억효과 (The Reverse Shape Memory Effect in a DO3 CuZnAl Alloy)

  • 정인상;이인철;박정식;이순린
    • 열처리공학회지
    • /
    • 제3권2호
    • /
    • pp.1-9
    • /
    • 1990
  • Since the reverse shape memory effect(RSME) was reported in a CuZnAl alloy, further study has been done on the mechanism of this phenomenon and reported that it occurs by the bainitic transformation. But the present authors revealed in the previous work that the RSME in a B2 CuZnAl alloy is not caused by the shear process involved in the bainitic transformation and also that the RSME takes place as the remaining ${\alpha}^{\prime}{_2}$ phase, which is two-step transformed strain induced martensite, is newly transformed into ${\alpha}$ phase. In order to provide further evidence in supporting the facts, thus, more detailed investigations have been carried out in a $DO_3$ CuZnAl alloy.

  • PDF

Analysis of beam-column joints reinforced with SMAs under monotonous loading with existence of transverse beam

  • Halahla, Abdulsamee M.;Tahnat, Yazan B. Abu;Dwaikat, Monther B.
    • Earthquakes and Structures
    • /
    • 제22권3호
    • /
    • pp.231-243
    • /
    • 2022
  • Beam-column joints (BCJs) are recognized among the most crucial zones in reinforced concrete structures, as they are the critical elements subjected to a complex state of forces during a severe earthquake. Under such conditions, BCJs exhibit behaviors with impacts that extend to the whole structure and significantly influence its ductility and capability of dissipating energy. The focus of this paper is to investigate the effect of undamaged transverse beam (secondary beams) on the ductility of concrete BCJs reinforced with conventional steel and shape memory alloys bars using pushover analysis at tip of beam under different axial load levels at the column using a nonlinear finite element model in ABAQUS environment. A numerical model of a BCJ was constructed and the analysis outcomes were verified by comparing them to those obtained from previous experiments found in the literature. The comparison evidenced the capability of the calibrated model to predict the load capacity response of the joint. Results proved the ability of undamaged secondary beams to provide a noticeable improvement to the ductility of reinforced concrete joints, with a very negligible loss in load capacity. However, the effect of secondary beams can become less significant if the beams are damaged due to seismic effects. In addition, the axial load was found to significantly enhance the performance of BCJs, where the increase in axial load magnified the capacity of the joint. However, higher values of axial load resulted in greater initial stiffness of the BCJ.

불순물의 종류에 따른 형상기억합금의 열처리효과 (The effect of thermal treatment of shape memory alloy with the kind of impurity)

  • 박성근;유병길;진광수;김기완
    • 센서학회지
    • /
    • 제6권6호
    • /
    • pp.500-507
    • /
    • 1997
  • 형상기억 합금의 정밀한 동작 온도 조절을 위한 불순물의 종류에 따른 형상기억합금의 열처리 효과를 연구하였다. 급냉온도에 따른 전기 저항 측정으로 Cu-17.25Zn-15Al 및 Cu-17.25Zn-15Al-1Ag/Fe 의 열처리에 의한 마르텐사이트 변태온도의 변화를 측정하였다. 승온율에 따른 DSC(Differential scanning calorimeter) 측정으로 고온모상에서의 상전이 온도와 종류를 구별하였다. 그리고 XRD 측정으로 구조 변화를 관찰하였다. Cu-17.25Zn-15Al 합금에서 고온 모상의 규칙-불규칙 전이온도인 $T_{B2}$, $T_{L21}$은 각각 809K와 610K이고. Cu-17.25Zn-15Al-1Ag 및 Cu-17.25Zn-15Al-1Fe 시료의 $T_{B2}$, $T_{L21}$은 각각 794K, 610K 그리고 803K, 613K 이다. 모든 시료에서 $T_{B2}$ 근방에서의 급냉은 마그텐사이트. 변태온도를 높이지만 $T_{L21}$ 근방에서의 급냉은 마르텐사이트 변태온도를 낮춘다.

  • PDF

분말야금법을 이용한 Ti-Ni 섬유강화 형상기억복합재료 특성에 관한 연구

  • 박민식;윤두표;박영철
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 춘계학술대회 논문집
    • /
    • pp.738-742
    • /
    • 1996
  • In the present paper, We have tried to reconfirm the "Interlligent" material properties using both the sintered TiNi/A(1100) matrix composite by powder metallurgy method. By using these specimen, Shape meorystrengthening effect in tensile strengthand fatigue crack propagation above inverse transformation temperature of TiNi fiber were investigated. More over, by SEM obsevation, the effect of the residual stress at the interface between A1 matrix and TiNi fiber and some brittle precipitation layers such as inter metallic compounds on fracture mechanisms was metallurgically discussed.discussed.

  • PDF

Optimum design and vibration control of a space structure with the hybrid semi-active control devices

  • Zhan, Meng;Wang, Sheliang;Yang, Tao;Liu, Yang;Yu, Binshan
    • Smart Structures and Systems
    • /
    • 제19권4호
    • /
    • pp.341-350
    • /
    • 2017
  • Based on the super elastic properties of the shape memory alloy (SMA) and the inverse piezoelectric effect of piezoelectric (PZT) ceramics, a kind of hybrid semi-active control device was designed and made, its mechanical properties test was done under different frequency and different voltage. The local search ability of genetic algorithm is poor, which would fall into the defect of prematurity easily. A kind of adaptive immune memory cloning algorithm(AIMCA) was proposed based on the simulation of clone selection and immune memory process. It can adjust the mutation probability and clone scale adaptively through the way of introducing memory cell and antibody incentive degrees. And performance indicator based on the modal controllable degree was taken as antigen-antibody affinity function, the optimization analysis of damper layout in a space truss structure was done. The structural seismic response was analyzed by applying the neural network prediction model and T-S fuzzy logic. Results show that SMA and PZT friction composite damper has a good energy dissipation capacity and stable performance, the bigger voltage, the better energy dissipation ability. Compared with genetic algorithm, the adaptive immune memory clone algorithm overcomes the problem of prematurity effectively. Besides, it has stronger global searching ability, better population diversity and faster convergence speed, makes the damper has a better arrangement position in structural dampers optimization leading to the better damping effect.

Incremental dynamic analyses of concrete buildings reinforced with shape memory alloy

  • Mirtaheri, Masoud;Amini, Mehrshad;Khorshidi, Hossein
    • Steel and Composite Structures
    • /
    • 제23권1호
    • /
    • pp.95-105
    • /
    • 2017
  • The use of superelastic shape memory alloys (SMAs) as reinforcements in concrete structures is gradually gaining interest among researchers. Because of different mechanical properties of SMAs compared to the regular steel bars, the use of SMAs as reinforcement in the concrete may change the response of structures under seismic loads. In this study, the effect of SMAs as reinforcement in concrete structures is analytically investigated for 3-, 6- and 8-story reinforced concrete (RC) buildings. For each concrete building, three different reinforcement details are considered: (1) steel reinforcement (Steel) only, (2) SMA bar used in the plastic hinge region of the beams and steel bar in other regions (Steel-SMA), and (3), beams fully reinforced with SMA bar (SMA) and steel bar in other regions. For each case, columns are reinforced with steel bar. Incremental Dynamic Analyses (IDA) are performed using ten different ground motion records to determine the seismic performance of Steel, Steel-SMA and SMA RC buildings. Then fragility curves for each type of RC building by using IDA results for IO, LS and CP performance levels are calculated. Results obtained from the analyses indicate that 3-story frames have approximately the same spectral acceleration corresponding with failure of frames, but in the cases of 6 and 8-story frames, the spectral acceleration is higher in frames equipped with steel reinforcements. Furthermore, the probability of fragility in all frames increases by the building height for all performance levels. Finally, economic evaluation of the three systems are compared.

형상기억합금(SMA) 스티어링 카테터의 반응속도 향상을 위한 펠티어 열전소자의 열전기적 특성 평가 (Evaluation of Thermoelectric Characteristics of Peltier Thermoelectric Module for Increasing Response Velocity in Shape Memory Alloy (SMA) Steering Catheter)

  • 오동준;김철웅;김태영;이호상;김재정
    • 대한기계학회논문집B
    • /
    • 제34권3호
    • /
    • pp.301-307
    • /
    • 2010
  • 형상기억합금(SMA)을 이용한 액추에이션 방식은 차세대 의료기기 시장을 선도할 중요한 핵심기술이다. 그 이유는 인간의 손동작과 같은 유연성과 섬세한 움직임을 구현할 수 있어서 시술자의 정교한 최소침습술(MIS) 테크닉을 그대로 인체내 병변치료에 적용할 수 있는 장점이 있기 때문이다. 그러나 아직까지 SMA 액추에이터가 상용화에 크게 성공을 거두지 못한 이유는 SMA 고유의 히스테리시스(hysteresis)와 같은 비선형적 동특성이 아직 해결되지 못하고 있기 때문이다. 이러한 한계성을 극복해줄 수 있는 방안으로 본 저자는 펠티에 효과(Peltier effect)를 이용한 열전소자를 SMA 카테터에 결합하여 능동적이고 신속하게 급열 급랭할 수 있는 SMA 액추에이터를 특허등록하였고, 본 연구를 통해 열전소자의 연속전류의 단계적 전류증가에 따른 온도변화, 불연속 정전류 역전류에 따른 온도변화를 평가하고 고찰하였다.